Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 516-524     CSTR: 32134.14.1005.4537.2022.226      DOI: 10.11902/1005.4537.2022.226
  研究报告 本期目录 | 过刊浏览 |
ZAlSi7Mg铝合金在深海环境中的腐蚀行为研究
彭文山(), 段体岗, 马力, 辛永磊, 程文华, 刘少通
中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Corrosion Behavior of ZAlSi7Mg Al-alloy in Deep-sea Environments in Western Pacific Ocean and South China Sea
PENG Wenshan(), DUAN Tigang, MA Li, XIN Yonglei, CHENG Wenhua, LIU Shaotong
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
全文: PDF(8152 KB)   HTML
摘要: 

为研究深海低温高压环境中ZAlSi7Mg铝合金的腐蚀行为,采用深海高效串型试验装置进行西太平洋海域腐蚀试验,利用SEM、EDS、XPS等技术分析了ZAlSi7Mg铝合金在500、800、1200和2000 m海深下的长周期腐蚀速率、点蚀深度、腐蚀形貌及腐蚀产物,并与中国南海海域深海腐蚀规律进行对比。结果表明:(1) ZAlSi7Mg铝合金在西太平洋500和2000 m深度处的腐蚀速率和腐蚀产物厚度均高于800和1200 m深度处,且随着海水深度增加,铝合金平均点蚀深度逐渐减小;(2) 深海环境中ZAlSi7Mg铝合金的腐蚀类型主要是点蚀、缝隙腐蚀和晶间腐蚀;(3) 在西太平洋深海环境中,试验深度较大处试样与较浅处试样相比,表面腐蚀产物中含Al化合物含量较高,而含Mg的化合物含量较低,腐蚀产物主要包括Al2O3、Al(OH)3、Al2SiO5和Mg(OH)2。(4) 在西太平洋和中国南海同一海水深度处,ZAlSi7Mg铝合金的腐蚀速率和点蚀深度均存在较大差别。在中国南海2000 m海深处铝合金腐蚀速率略小于1200 m海深处,而2000 m海深处点蚀深度略大于1200 m海深处,而在西太平洋海域,这两个海深处的腐蚀速率和点蚀深度变化规律与中国南海海域的相反。

关键词 深海ZAlSi7Mg铝合金腐蚀实海试验    
Abstract

The corrosion behavior of ZAlSi7Mg Al-alloy in low temperature and high pressure deep-sea environment was studied by using a home-made high-efficiency cascade device, whilst the long-term corrosion rate, pitting depth, corrosion morphology and corrosion products of ZAlSi7Mg Al-alloy at depth of 500, 800, 1200 and 2000 m in test sites located in the Western Pacific Ocean and the South China Sea were comparatively assessed by means of SEM, EDS and XPS techniques. The results show that: (1) The corrosion rate and corrosion product thickness of ZAlSi7Mg Al-alloy at 500 and 2000 m depths are higher than those at 800 and 1200 m depths respectively in the Western Pacific Ocean, and the average pitting depth of ZAlSi7Mg Al-alloy gradually decreases with the increase of the test depth. (2) The corrosion types of ZAlSi7Mg Al-alloy in the deep-sea environment are mainly pitting corrosion, crevice corrosion and intergranular corrosion. (3) In the deep-sea environment of the Western Pacific Ocean, the corrosion products of the alloy tested at larger depth have higher Al content, but lower Mg content, in comparison to those tested at shallower depth. The corrosion products mainly include Al2O3, Al(OH)3, Al2SiO5 and Mg(OH)2. (4) The ZAlSi7Mg Al-alloy presents different corrosion behavior, namely its corrosion rate and pitting depth for testing at the same seawater depth in the Western Pacific Ocean and the South China Sea respectively. In the South China Sea, the corrosion rate of Al-alloy at 2000 m depth is slightly less than that at 1200 m depth, while the pitting depth of Al-alloy at 2000 m depth is slightly greater than that at 1200 m depth. However, for the Western Pacific Ocean, change trends of corrosion rate and pitting depth of ZAlSi7Mg Al-alloy in these two depths are just opposite to those in the South China Sea.

Key wordsdeep sea    ZAlSi7Mg Al-alloy    corrosion    real sea test
收稿日期: 2022-07-08      32134.14.1005.4537.2022.226
ZTFLH:  TG172  
基金资助:国家自然科学基金(51931008)
通讯作者: 彭文山,E-mail: pengwenshan1386@126.com,研究方向为海洋环境腐蚀、多相流冲蚀及腐蚀/冲蚀仿真
Corresponding author: PENG Wenshan, E-mail: pengwenshan1386@126.com
作者简介: 彭文山,男,1987年生,博士,高级工程师

引用本文:

彭文山, 段体岗, 马力, 辛永磊, 程文华, 刘少通. ZAlSi7Mg铝合金在深海环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 516-524.
PENG Wenshan, DUAN Tigang, MA Li, XIN Yonglei, CHENG Wenhua, LIU Shaotong. Corrosion Behavior of ZAlSi7Mg Al-alloy in Deep-sea Environments in Western Pacific Ocean and South China Sea. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 516-524.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.226      或      https://www.jcscp.org/CN/Y2023/V43/I3/516

图1  ZAlSi7Mg铝合金在不同海深下的腐蚀速率及点蚀深度
图2  ZAlSi7Mg铝合金深海腐蚀2 a去除腐蚀产物前后宏观形貌
图3  ZAlSi7Mg铝合金深海腐蚀2 a后微观形貌
图4  ZAlSi7Mg铝合金深海腐蚀2 a去除腐蚀产物后微观形貌
Depth/mNaMgAlSiPSClKCaFe
5000.993.1916.502.23-0.17--0.54-
8002.941.7517.689.320.20-0.130.180.500.39
12006.810.4518.682.71---0.160.261.75
20004.950.6030.105.50-0.120.170.130.250.40
表1  在不同深度海水环境中腐蚀产物元素组成 (atomic fraction/%)
图5  ZAlSi7Mg铝合金试样在不同深度海水中暴露2 a后的表面腐蚀产物XPS分析
图6  ZAlSi7Mg铝合金在西太平洋和中国南海的深海腐蚀速率及点蚀深度
图7  中国南海不同海水深度处铝合金去除腐蚀产物前后腐蚀形貌
图8  中国南海海域铝合金腐蚀2 a去除腐蚀产物后微观形貌3D形貌
1 Li J, Yuan L L. A summary of the current situation and trend of global marine resources development [J]. Land Resour. Inf., 2013, (12): 13
1 李 军, 袁伶俐. 全球海洋资源开发现状和趋势综述 [J]. 国土资源情报, 2013, (12): 13
2 Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
2 曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
3 Lin J H, Dan Z H, Lu J F, et al. Research status and prospect on marine corrosion of titanium alloys in deep ocean environments [J]. Rare Met. Mater. Eng., 2020, 49: 1090
3 林俊辉, 淡振华, 陆嘉飞 等. 深海腐蚀环境下钛合金海洋腐蚀的发展现状及展望 [J]. 稀有金属材料与工程, 2020, 49: 1090
4 Huang Y Z, Dong L H, Liu B Y. Current status and development trend of study on corrosion of aluminum alloy in deep sea [J]. Mater. Prot., 2014, 47(1): 44
4 黄雨舟, 董丽华, 刘伯洋. 铝合金深海腐蚀的研究现状及发展趋势 [J]. 材料保护, 2014, 47(1): 44
5 Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
5 柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175
doi: 10.11902/1005.4537.2021.050
6 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
6 高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
7 Canepa E, Stifanese R, Merotto L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: a review and the KM3NeT test results [J]. Mar. Struct., 2018, 59: 271
doi: 10.1016/j.marstruc.2018.02.006
8 Sparks C P, Cabillic J P, Schawann J C. Longitudinal resonant behavior of very deep water risers [J]. J. Energy Resour. Technol., 1983, 105: 282
doi: 10.1115/1.3230916
9 Chandler K A. Marine and Offshore Corrosion: Marine Engineering Series [M]. London: Butterworth- Heinemann, 1985
10 Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al. Corrosion of ferrous alloys in deep sea environments [J]. Br. Corros. J., 2002, 37: 257
doi: 10.1179/000705902225006633
11 Sawant S S, Krishnamurthy V, Wagh A B. Corrosion of metals and alloys in the coastal and deep waters of the Arabian Sea and the bay of bengal [J]. Ind. J. Technol., 1993, 31: 862
12 Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep sea environment [J]. Ocean Eng., 2019, 189: 106405
doi: 10.1016/j.oceaneng.2019.106405
13 Duan T G, Xu L K, Ding K K, et al. Corrosion behaviour investigation of 460 low alloy steels exposed in the natural deep-sea environment [J]. Corros. Eng. Sci. Technol., 2019, 54: 485
doi: 10.1080/1478422X.2019.1619290
14 Ding K K, Guo W M, Qiu R, et al. Corrosion behavior of Q235 steel exposed in deepwater of South China Sea [J]. J. Mater. Eng. Perform., 2018, 27: 4489
doi: 10.1007/s11665-018-3553-x
15 Fink F W, Boyd W K. The Corrosion of Metals in Marine Environments [M]. Ohio: ‎Defense Metals Information Center, 1970
16 Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 1: 47
16 周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 1: 47
17 Meng X Q. Experimental Study on stress corrosion and corrosion fatigue behavior of aluminum alloy materials [D]. Shanghai: Shanghai Jiao Tong University, 2012
17 孟祥琦. 铝合金材料的应力腐蚀及腐蚀疲劳特性实验研究 [D]. 上海: 上海交通大学, 2012
18 Peng W S, Duan T G, Hou J, et al. Long-term corrosion behaviour of 1060 aluminium in deep-sea environment of South China Sea [J]. Corros. Eng. Sci. Technol., 2021, 56: 327
doi: 10.1080/1478422X.2020.1861732
19 Guo W M, Sun M X, Hou J, et al. Highly efficient bunch-style device for corrosion testing in deep sea environment [J]. Equip. Environ. Eng., 2016, 13(5): 25
19 郭为民, 孙明先, 侯 健 等. 高效串型深海环境腐蚀试验技术 [J]. 装备环境工程, 2016, 13(5): 25
20 Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
20 侯 健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82
21 Ding Y, Zhao R, Qin Z B, et al. Evolution of the corrosion product film on nickel-aluminum bronze and its corrosion behavior in 3.5wt % NaCl solution [J]. Materials (Basel), 2019, 12: 209
doi: 10.3390/ma12020209
22 Li C, Meng X Q, Liu C, et al. Research on stress corrosion cracking of ZL101 aluminum alloy [J]. Chin. Quart. Mechan., 2011, 32: 338
22 李 晨, 孟祥琦, 刘 畅 等. ZL101铝合金应力腐蚀特性研究 [J]. 力学季刊, 2011, 32: 338
23 Moulder J F, Chastain J, King R C. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data [J]. Perkin-Elmer Corporat., 1992, 40: 221
24 Gubicza J, Chinh N Q, Horita Z, et al. Effect of Mg addition on microstructure and mechanical properties of aluminum [J]. Mater. Sci. Eng., 2004, 387A: 55
[1] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[3] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[4] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[5] 张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[6] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[7] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[8] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[9] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[10] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[11] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[12] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[13] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[14] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[15] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.