Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 507-515     CSTR: 32134.14.1005.4537.2022.170      DOI: 10.11902/1005.4537.2022.170
  研究报告 本期目录 | 过刊浏览 |
新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为
汪涵敏, 黄峰(), 袁玮, 张佳伟, 王昕煜, 刘静
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及 服役安全工程技术研究中心 武汉 430081
Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere
WANG Hanmin, HUANG Feng(), YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(12662 KB)   HTML
摘要: 

通过干、湿交替周期浸润实验、场发射扫描电子显微镜 (FE-SEM)、场发射电子探针 (FE-EPMA)、X射线衍射 (XRD)、Raman光谱以及电化学测试等技术,研究了新型Cu-Mo试验钢在模拟海洋大气中的长期腐蚀行为。结果表明,新型Cu-Mo试验钢的腐蚀过程可分为加速和减速两个阶段。腐蚀前期,以多边形铁素体和少量片层状珠光体为主的新型Cu-Mo试验钢的耐蚀性劣于以贝氏体-铁素体为主的含Cr耐候钢;长期腐蚀后期,新型Cu-Mo试验钢中Cu、Mo的富集和α-FeOOH的增加增强了锈层的防护性,使新型Cu-Mo试验钢的腐蚀速率大大降低,耐候性反而优于含Cr耐候钢。

关键词 新型Cu-Mo试验钢海洋大气耐蚀性能    
Abstract

The long-term corrosion behavior of a novel Cu-Mo test steel in an artificial marine atmosphere was studied by means of dry-wet alternate periodic immersion test, field emission scanning electron microscopy (FE-SEM), field emission electron probe (FE-EPMA), X-ray diffractometer (XRD), Raman spectroscopy (Raman) and electrochemical test. The results show that the Cu-Mo test steel presents a microstructure composed mainly of polygonal ferrite and a small amount of lamellar pearlite, while the counterpart Cr-containing weathering steel presents a microstructure composed mainly of bainite and ferrite. The corrosion process of the Cu-Mo test steel can be divided into two stages: acceleration and deceleration. In the early stage of corrosion, the corrosion resistance of the Cu-Mo test steel is inferior to that of the ordinary Cr-containing weathering steel. At the later stage of corrosion, the enrichment of Cu and Mo occurred in the Cu-Mo test steel, thereby resulted in the increase of α-FeOOH, which enhanced the protectiveness of the rust layer, therefore the corrosion rate of the Cu-Mo test steel decreased. In a word, the new Cu-Mo test steel presents better weathering resistance rather than that of the ordinary Cr-containing weathering steel.

Key wordsCu-Mo test steel    marine atmosphere    corrosion resistance
收稿日期: 2022-05-29      32134.14.1005.4537.2022.170
ZTFLH:  TG172  
基金资助:湖北省自然科学基金科技创新群体(2021CFA023)
通讯作者: 黄 峰,E-mail:huangfeng@wust.edu.cn,研究方向为高性能钢铁材料及服役安全
Corresponding author: HUANG Feng, E-mail: huangfeng@wust.edu.cn
作者简介: 汪涵敏,女,1997年生,硕士生

引用本文:

汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 507-515.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.170      或      https://www.jcscp.org/CN/Y2023/V43/I3/507

SampleCSiMnPSNiCuCrMoFe
New Cu-Mo test steel<0.210.281.000.013<0.0100.160.53-0.52Bal.
Cr-bearing weathering steel<0.210.301.040.014<0.0100.150.320.50<0.1Bal.
Q355C<0.210.271.460.0170.010----Bal.
表1  3种钢的化学成分
图1  3种钢的显微组织照片
图2  3种钢试样平均腐蚀速率随时间变化曲线
图3  腐蚀768 h后3种钢试样锈层表面微观形貌
图4  腐蚀768 h后3种钢试样锈层截面形貌及元素分布图
图5  腐蚀768 h后3种钢试样锈层的XRD谱及半定量分析
图6  腐蚀768 h后3种钢试样锈层截面物相分布图
图7  腐蚀768 h后3种钢试样的电化学阻抗谱
图8  腐蚀768 h后3种钢试样EIS拟合结果
图9  3种钢试样腐蚀深度-时间双对数曲线
1 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
1 刘海霞, 黄 峰, 袁 玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
doi: 10.11902/1005.4537.2020.002
2 Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
doi: 10.1016/j.corsci.2011.08.028
3 Wang Y, Mu X, Chen Z Y, et al. Understanding the role of alloyed Cu and P in the initial rust composition of weathering steel formed in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2021, 193: 109912
doi: 10.1016/j.corsci.2021.109912
4 Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment [J]. Constr. Build. Mater., 2021, 277: 122298
doi: 10.1016/j.conbuildmat.2021.122298
5 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
6 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
7 Cheng X Q, Tian Y W, Li X G, et al. Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment [J]. Mater. Corros., 2014, 65: 1033
8 Wang F C, Zhao J B, Liu B, et al. Comparative study of rust layers on the advanced 3Ni steel, Q235 carbon steel and conventional weathering steel exposed to atmosphere environment of tropical islands [J]. Mater. Prot., 2020, 53(3): 8
8 王发仓, 赵晋斌, 刘 波 等. 新型3Ni钢和Q235碳钢、普通耐候钢在热带岛屿大气环境中暴晒后的锈层对比分析 [J]. 材料保护, 2020, 53(3): 8
9 Nishimura T. Electrochemical behaviour and structure of rust formed on Si- and Al-bearing steel after atmospheric exposure [J]. Corros. Sci., 2010, 52: 3609
doi: 10.1016/j.corsci.2010.07.006
10 Ahn S H, Park K J, Oh K N, et al. Effects of Sn and Sb on the corrosion resistance of AH 32 steel in a cargo oil tank environment [J]. Met. Mater. Int., 2015, 21: 865
doi: 10.1007/s12540-015-5164-5
11 Sun Y P, Wei X, Dong J H, et al. Understanding the role of alloyed Ni and Cu on improving corrosion resistance of low alloy steel in the simulated Beishan groundwater [J]. J. Mater. Sci. Technol., 2022, 130: 124
doi: 10.1016/j.jmst.2022.03.037
12 Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
12 张天翼, 柳 伟, 范玥铭 等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
doi: 10.11902/1005.4537.2018.165
13 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
14 Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
doi: 10.1016/j.jmst.2020.12.014
15 Wang J J, Huang F, Zhou X J, et al. Relative function of effects of alloy elements on corrosion resistance of weathering steels in marine atmosphere [J]. Corros. Prot., 2015, 36: 58
15 王晶晶, 黄 峰, 周学俊 等. 合金元素对耐候钢在海洋大气中耐蚀性影响的交互作用 [J]. 腐蚀与防护, 2015, 36: 58
16 Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
doi: 10.1016/j.corsci.2011.09.023
17 Zhao B J, Zhao J J, Fan Y, et al. Corrosion behaviors of Mo-containing low alloy steels exposed in simulated acidic marine atmosphere environment [J]. Dev. Appl. Mater., 2019, 34(6): 86
17 赵柏杰, 赵俊杰, 范 益 等. 含Mo低合金钢在模拟酸性海洋大气环境中的腐蚀规律研究 [J]. 材料开发与应用, 2019, 34(6): 86
18 Park S A, Kim J G, He Y S, et al. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment [J]. Phys. Met. Metallogr., 2014, 115: 1285
doi: 10.1134/S0031918X14130201
19 Sun M H, Pang Y J, Du C W, et al. Optimization of Mo on the corrosion resistance of Cr-advanced weathering steel designed for tropical marine atmosphere [J]. Constr. Build. Mater., 2021, 302: 124346
doi: 10.1016/j.conbuildmat.2021.124346
20 Xu X X, Zhang T Y, Wu W, et al. Optimizing the resistance of Ni-advanced weathering steel to marine atmospheric corrosion with the addition of Al or Mo [J]. Constr. Build. Mater., 2021, 279: 122341
doi: 10.1016/j.conbuildmat.2021.122341
21 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People's Republic of China. Corrosion of metals and alloys-Alternate immersion test in salt solution [S]. Beijing: Standards Press of China, 2005
21 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 盐溶液周浸试验 [S]. 北京: 中国标准出版社, 2005
22 Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
doi: 10.1016/j.corsci.2018.06.039
23 Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
23 郭铁明, 张延文, 秦俊山 等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319
doi: 10.11902/1005.4537.2018.127
24 Luo R, Wu J, Liu X L, et al. Evolution of rust layers formed on Q235 and 09CuPCrNi-A steels during initial stage of field exposure in two sites of different environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 566
24 罗 睿, 吴 军, 柳鑫龙 等. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究 [J]. 中国腐蚀与防护学报, 2014, 34: 566
25 Wang Y, Mu X, Dong J H, et al. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76: 41
doi: 10.1016/j.jmst.2020.11.021
26 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
27 Zhang Y, Liu J, Huang F, et al. Comparative study of corrosion resistance of three weathering steels for bridges in simulated marine atmospheric environment [J]. J. Wuhan Univ. Sci. Technol., 2018, 41: 401
27 张 宇, 刘 静, 黄 峰 等. 三种桥梁耐候钢在模拟海洋大气环境中的耐蚀性能比较 [J]. 武汉科技大学学报, 2018, 41: 401
28 Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
29 Liu H X, Huang F, Yuan W, et al. Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere [J]. Corros. Sci., 2020, 173: 108758
doi: 10.1016/j.corsci.2020.108758
30 Morcillo M, Díaz I, Chico B, et al. Weathering steels: from empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
31 Seechurn Y, Surnam B Y R, Wharton J A. Marine atmospheric corrosion of carbon steel in the tropical microclimate of Port Louis [J]. Mater. Corros., 2022, 73: 1474
32 Zhang Y, Huang F, Hu Q, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel [J]. Mater. Chem. Phys., 2020, 241: 122045
doi: 10.1016/j.matchemphys.2019.122045
33 Shi J, Hu X W, Zhang D L, et al. Influence of microstructure on corrosion resistance of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 721
33 石 践, 胡学文, 张道刘 等. 显微组织对高强耐候钢腐蚀性能的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 721
[1] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[2] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[3] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[4] 王瑾, 宁培栋, 刘倩倩, 陈娜娜, 张新, 肖葵. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[5] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[6] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[7] 贾静焕, 刘明, 骆晨, 孙志华, 赵明亮, 李晓刚. 2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 143-151.
[8] 丁康康, 刘少通, 郭为民, 苗依纯, 张彭辉, 程文华, 侯健. 聚乙烯青岛海洋大气环境腐蚀老化预测研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1070-1074.
[9] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[10] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[11] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[12] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[13] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[14] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[15] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.