Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1358-1366     CSTR: 32134.14.1005.4537.2022.380      DOI: 10.11902/1005.4537.2022.380
  研究报告 本期目录 | 过刊浏览 |
风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究
何训1, 吴梦雪1(), 尹力1, 朱金2
1.西南石油大学土木工程与测绘学院 成都 610500
2.西南交通大学桥梁工程系 成都 610031
Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads
HE Xun1, WU Mengxue1(), YIN Li1, ZHU Jin2
1.School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2.Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, China
引用本文:

何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
Xun HE, Mengxue WU, Li YIN, Jin ZHU. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1358-1366.

全文: PDF(5058 KB)   HTML
摘要: 

基于连续介质损伤力学,采用ANSYS建立双蚀坑钢丝模型,结合某悬索桥的风-车流-桥耦合振动分析所得吊索应力时程数据,研究了不同工况下的带两个主蚀坑的该悬索桥吊索钢丝的疲劳损伤演化规律,探讨风速、车流、吊索位置、蚀坑形状参数、双蚀坑形状不对称等因素对双蚀坑吊索钢丝损伤演化规律和疲劳寿命的影响。结果表明:双蚀坑吊索钢丝的腐蚀疲劳寿命对高风速更加敏感;在同一风速下,车流量越大,双蚀坑吊索钢丝的腐蚀疲劳寿命越短;在风-车流耦合作用下,双蚀坑吊索钢丝的腐蚀疲劳寿命明显低于无车流工况下的;位于桥梁跨中的短吊索钢丝比地面长吊索钢丝和1/4跨吊索钢丝的腐蚀疲劳寿命更短;蚀坑的深宽比越大,蚀坑形状越尖锐,双蚀坑吊索钢丝的腐蚀疲劳寿命越短;当双蚀坑形状不对称时,吊索钢丝的腐蚀疲劳寿命主要由深宽比较大的蚀坑决定。

关键词 腐蚀疲劳损伤演化疲劳寿命高强钢丝双蚀坑    
Abstract

To investigate the course of fatigue damage evolution and fatigue life of the corroded steel wire with double corrosion pits for suspension bridges, a model of high-strength steel wire with double corrosion pits was established through finite element software ANSYS. Based on continuum damage mechanics combined with the time-history data of sling stress of suspenders acquired from the wind-traffic-bridge coupling vibration analysis, the course of fatigue damage evolution for the high-strength steel wire with double corrosion pits under different operation conditions was studied. Meanwhile, the influence of wind speed, traffic load, suspender position, shape of corrosion pit and shape of asymmetric double corrosion pits on the course of damage evolution and fatigue life of the high-strength steel wire with double corrosion pits was discussed respectively. The results show that the corrosion fatigue life of the steel wire with double corrosion pits is more sensitive to high wind speed rather than low wind speed. Moreover, the corrosion fatigue life of steel wire decreases with the increase of the traffic flow under the same wind speed. When the wind and traffic flow are coupled, the corrosion fatigue life of high-strength steel wire with double corrosion pits is obviously lower than that without traffic flow. The short suspender at the bridge mid-span has shorter corrosion fatigue life than that of the longest ground suspender and suspender located at 1/4 span. Furthermore, it is found that the greater the depth-width ratio of the corrosion pit, the sharper shape the corrosion pit, thus the shorter the corrosion fatigue life of the steel wire with double corrosion pits. When the shape of double corrosion pits is asymmetric, the corrosion fatigue life of suspender steel wire is mainly determined by the pits with larger depth-width ratio.

Key wordscorrosion fatigue    damage evolution    fatigue life    high-strength steel wire    double corrosion pits
收稿日期: 2022-12-05      32134.14.1005.4537.2022.380
ZTFLH:  TU313  
基金资助:国家自然科学基金(51708470);西南石油大学桥梁安全评估青年科技创新团队(2018CXTD07);四川省科学技术厅科技计划项目(2020YJ0080);中国博士后科学基金特别资助(2019TQ0271)
通讯作者: 吴梦雪,E-mail: mx_swpu@126.com,研究方向为风-车-桥耦合振动、钢结构腐蚀疲劳
Corresponding author: WU Mengxue, E-mail: mx_swpu@126.com
作者简介: 何训,男,1999年生,硕士生
图1  悬索桥立面图及关键位置吊索示意图
图2  风-车流联合作用下吊索S1、S19和S36的应力时程曲线
Traffic flowum/sEquivalent stress range values / MPaNumbers of stress cycles
S1S19S36S1S19S36
No flow10.57.714.064.191008033125904
13.510.785.505.5911952806412240
16.515.287.378.67142561036814544
20.015.797.799.461742411728018144
Free flow10.512.2513.6514.918352892810224
13.513.0713.4214.89119521166412528
16.515.8713.6016.25138241353615408
20.017.1913.3714.44169921900818288
Busy flow10.514.9611.8913.0699361440018288
13.515.7611.8513.73119521684819872
16.517.3312.8414.95136801670419728
20.018.3912.8615.68171361944021024
表1  一天之内吊索S1、S19、S36在不同风速、车流工况下应力数据统计[19]
图3  含单个半椭球形状蚀坑的钢丝示意图
图4  含两个半椭球形状蚀坑的钢丝横截面图和俯视图
Mesh accuracy mmMaximum nodal stress MPaMaximum element stress MPaSN / SE
0.1808.79812.5299.54%
0.2800.63810.7598.75%
0.3789.99814.4597.00%
0.4764.50841.5090.85%
表2  4种网格尺寸条件下SN与SE计算结果
图5  双蚀坑钢丝有限元模型网格划分
图6  循环荷载与荷载循环区的关系
图7  不同时间点钢丝双蚀坑附近等效应力云图
图8  不同时间点吊索钢丝损伤变量曲线图
图9  沿钢丝z轴和x轴方向双蚀坑附近的等效应力分布
图10  不同风速下吊索钢丝的损伤变量曲线
图11  不同车流下吊索钢丝的损伤变量曲线和腐蚀疲劳寿命曲线
图12  不同位置吊索钢丝的损伤变量曲线
图13  不同形状参数下吊索钢丝的损伤变量曲线
图14  蚀坑形状不对称下吊索钢丝的损伤变量曲线
1 Wang Y, Zheng Y Q, Zhang W H, et al. Analysis on damage evolution and corrosion fatigue performance of high-strength steel wire for bridge cable: experiments and numerical simulation [J]. Theor. Appl. Fract. Mech., 2020, 107: 102571
doi: 10.1016/j.tafmec.2020.102571
2 Fan Z Y, Ye Q W, Xu X, et al. Fatigue reliability-based replacement strategy for bridge stay cables: a case study in China [J]. Structures, 2022, 39: 1176
doi: 10.1016/j.istruc.2022.03.093
3 Yang S C, Zhang J Q, Yao G W. Analysis on corrosion-fatigue damage and fracture mechanism of cables/hangers in service bridges [J]. J. Highway Trans. Res. Dev., 2019, 36(3): 80
3 杨世聪, 张劲泉, 姚国文. 在役桥梁拉吊索腐蚀-疲劳损伤与破断机理分析[J]. 公路交通科技, 2019, 36(3): 80
doi: 10.3969/j.issn.1002-0268.2019.03.012
4 Liu D, Liu J, Huang F, et al. Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163
4 刘 冬, 刘 静, 黄 峰 等. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型 [J]. 中国腐蚀与防护学报, 2022, 42: 163
5 Sun X G, Wang Z H, Xu X X, et al. Effect of industrial atmospheric environment on corrosion fatigue behavior of Al-Mg-Si alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 501
5 孙晓光, 王子晗, 徐学旭 等. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 501
doi: 10.11902/1005.4537.2021.043
6 Hoeppner D W. Model for prediction of fatigue lives based upon a pitting corrosion fatigue process [M]//Fong J T. Fatigue mechanisms. Philadelphia: American Society for Testing and Materials, 1979: 841
7 Chen C, Jie Z Y, Wang K N. Fatigue life evaluation of high-strength steel wires with multiple corrosion pits based on the TCD [J]. J. Constr. Steel Res., 2021, 186: 106913
doi: 10.1016/j.jcsr.2021.106913
8 Kondo Y. Prediction of fatigue crack initiation life based on pit growth [J]. Corrosion, 1989, 45: 7
doi: 10.5006/1.3577891
9 Xu H S, Ren K, Yan D H. Study on stress intensity factor of double pits in corroded cable wires [J]. J. China Foreign Highw., 2021, 41(5): 90
9 许红胜, 任 凯, 颜东煌. 腐蚀拉索钢丝的双蚀坑应力强度因子研究 [J]. 中外公路, 2021, 41(5): 90
10 Fu L. Research of the effect of erosion pits on the stress intensity factor of cable wire [J]. Highw. Eng., 2022, 47(4): 40
10 傅 励. 斜拉索平行钢丝多蚀坑应力强度因子研究 [J]. 公路工程, 2022, 47(4): 40
11 Wang Z H. The research on stress intensity factor and remaining life of cable wire with multiple corrosion holes [D]. Changsha: Changsha University of Science and Technology, 2021
11 王智鸿. 拉索钢丝多蚀坑应力强度因子及剩余寿命研究 [D]. 长沙: 长沙理工大学, 2021
12 Ren K. The research on stress intensity factor and extended life for double pits of cable wire [D]. Changsha: Changsha University of Science and Technology, 2019
12 任 凯. 拉索钢丝双蚀坑应力强度因子及其扩展寿命研究 [D]. 长沙: 长沙理工大学, 2019
13 Xiao Y C, Li S, Gao Z. A continuum damage mechanics model for high cycle fatigue [J]. Int. J. Fatigue, 1998, 20: 503
doi: 10.1016/S0142-1123(98)00005-X
14 Amiri M, Arcari A, Airoldi L, et al. A continuum damage mechanics model for pit-to-crack transition in AA2024-T3 [J]. Corros. Sci., 2015, 98: 678
doi: 10.1016/j.corsci.2015.06.009
15 Hu W P, Shen Q A, Zhang M, et al. Corrosion-fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach [J]. Int. J. Damage Mech., 2012, 21: 1245
doi: 10.1177/1056789511432791
16 Cui C J, Chen A R, Ma R J. An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment [J]. Int. J. Fatigue, 2020, 135: 105540
doi: 10.1016/j.ijfatigue.2020.105540
17 Lemaitre J, Chaboche J L, translated by Shrivastava B. Mechanics of Solid Materials [M]. Cambridge: Cambridge University, 1990
18 Sun B. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue [J]. J. Constr. Steel Res., 2018, 146: 76
doi: 10.1016/j.jcsr.2018.03.031
19 Wu M X, Zhu J, Heng J L, et al. Fatigue assessment on suspenders under stochastic wind and traffic loads based on in-situ monitoring data [J]. Appl. Sci., 2019, 9: 3405
doi: 10.3390/app9163405
20 Hu P, Meng Q C, Hu W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy [J]. Corros. sci., 2016, 113: 78
doi: 10.1016/j.corsci.2016.10.006
21 Shen F, Hu W P, Meng Q C. A damage mechanics approach to fretting fatigue life prediction with consideration of elastic-plastic damage model and wear [J]. Tribol. Int., 2015, 82: 176
doi: 10.1016/j.triboint.2014.10.017
22 Cerit M, Genel K, Eksi S. Numerical investigation on stress concentration of corrosion pit [J]. Eng. Fail. Anal., 2009, 16: 2467
doi: 10.1016/j.engfailanal.2009.04.004
23 Zheng Y Q, Wang Y. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue [J]. Corros. Sci., 2020, 164: 108368
doi: 10.1016/j.corsci.2019.108368
[1] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[2] 刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[3] 翁硕, 俞俊, 赵礼辉, 冯金芝, 郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[4] 王歧山, 李鸿瑾, 何川, 郑平, 陈旭. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[5] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[6] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[7] 詹玉婷, 王建华, 靳凯, 陈建彬, 王虎军, 方军, 陈卫林, 随磊. 喷丸强化对自制螺母疲劳寿命性能的影响分析[J]. 中国腐蚀与防护学报, 2021, 41(3): 395-399.
[8] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[9] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[10] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[11] 梁瑞, 张新燕, 李淑欣, 姜峰, 陈帅甫. 半椭球蚀坑对圆棒应力集中的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[12] 谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[13] 包俊成,赵捷,王志奇,马叙. 钛合金BT20焊接接头腐蚀疲劳性能的实验研究[J]. 中国腐蚀与防护学报, 2010, 30(4): 313-316.
[14] 周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[15] 张强 . 304不锈钢微尺度试样的腐蚀疲劳性能[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .