Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1339-1348     CSTR: 32134.14.1005.4537.2022.412      DOI: 10.11902/1005.4537.2022.412
  研究报告 本期目录 | 过刊浏览 |
ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究
邢少华1(), 刘仲晔2, 刘近增3, 白舒宇1, 钱峣4, 张大磊5
1.中国船舶集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
2.海军装备部驻湘潭地区军事代表室 湘潭 411100
3.海洋石油工程 (青岛) 有限公司 青岛 266520
4.青岛市即墨区工业和信息化局 青岛 266205
5.中国石油大学 (华东) 材料科学与工程学院 青岛 266580
Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater
XING Shaohua1(), LIU Zhongye2, LIU Jinzeng3, BAI Shuyu1, QIAN Yao4, ZHANG Dalei5
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.Military Representative Office of Naval Equipment Department in Xiangtan Region, Xiangtan 411100, China
3.Offshore Oil Engineering (Qingdao) Co., Ltd., Qingdao 266520, China
4.Qingdao Jimo District Bureau of Industry and Information Technology, Qingdao 266205, China
5.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
引用本文:

邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
Shaohua XING, Zhongye LIU, Jinzeng LIU, Shuyu BAI, Yao QIAN, Dalei ZHANG. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1339-1348.

全文: PDF(19143 KB)   HTML
摘要: 

通过电化学法和微观形貌表征手段研究了ZCuSn5Pb5Zn5和B10管状偶对在静态以及1、3和5 m/s流速海水中的电偶腐蚀规律,探讨了电偶腐蚀机理。结果表明:在静态海水中,ZCuSn5Pb5Zn5和B10几乎不发生电偶腐蚀,且多次发生极性反转现象;流动海水中,ZCuSn5Pb5Zn5和B10间电偶腐蚀速率显著增加,1、3和5 m/s流速海水中的电偶腐蚀分别是静态海水中的22倍、49倍和69倍。混合电位理论分析表明ZCuSn5Pb5Zn5/B10电偶腐蚀速率是由ZCuSn5Pb5Zn5阳极反应动力学和B10阴极反应动力学共同控制,流动海水加速溶解氧、腐蚀产物扩散,金属阳极溶解和溶解氧还原速率增加,电偶腐蚀速率增加;在低流速条件下,阳极表面沉积腐蚀产物可抑制电偶腐蚀,但流速达到3 m/s以上时,腐蚀产物难以形成,保护作用逐渐减弱。

关键词 海水管路截止阀铜镍合金流动海水电偶腐蚀    
Abstract

Valve is one of the most important components for seawater pipeline, and is widely used in ship, but it suffers from serious corrosion, which leads to leaking or unclosing. Galvanic corrosion between ZCuSn5Pb5Zn5 and B10 is the main cause of such corrosion. In this paper, the galvanic corrosion of the couple ZCuSn5Pb5Zn5/B10 in flowing seawater and the galvanic corrosion mechanism is assessed by means of electrochemical method, SEM and EDS. The results suggest that, in static seawater, the galvanic corrosion rate between ZCuSn5Pb5Zn5 and B10 is very small, the relevant anode and cathode are reversed many times. In flowing seawater of 1, 3 and 5 m/s, the galvanic corrosion rate of ZCuSn5Pb5Zn5 obviously increases, which is 22, 49 and 69 times of that in static seawater respectively. In flowing seawater, the diffusion rate of dissolved oxygen and corrosion products is accelerated and the relevant anodic- and cathodic-reactions are both accelerated, thus the galvanic corrosion rate increases. The galvanic corrosion between ZCuSn5Pb5Zn5 and B10 is controlled by both the ZCuSn5Pb5Zn5 anodic reaction and the B10 cathodic reaction. With the gradually depositions of corrosion products, the anodic- and cathodic-reactions are inhibited, however when the flowing rate is more than 3 m/s, the deposition of corrosion products turns to be difficult, thus cannot provide proper barrier effect to the galvanic corrosion.

Key wordsseawater pipelines    valve    copper nickel alloy    flowing seawater    galvanic corrosion
收稿日期: 2022-12-27      32134.14.1005.4537.2022.412
ZTFLH:  TG174  
通讯作者: 邢少华,E-mail: xingsh@sunrui.net,研究方向为海洋腐蚀与防护
Corresponding author: XING Shaohua, E-mail:xingsh@sunrui.net
作者简介: 邢少华,男,1981年生,博士,高级工程师
图1  流动海水电偶腐蚀测试电解池示意图及海水管路综合模拟平台
图2  ZCuSn5Pb5Zn5、B10腐蚀电位和ZCuSn5Pb5Zn5/B10电偶电位
图3  ZCuSn5Pb5Zn5/B10偶对电偶电流随时间变化曲线
图4  电偶电流密度和电偶电位随流速变化曲线
图5  ZCuSn5Pb5Zn5微观形貌图
图6  ZCuSn5Pb5Zn5腐蚀产物元素组成EDS分析
图7  ZCuSn5Pb5Zn5去除产物后的三维形貌
图8  ZCuSn5Pb5Zn5去除产物后SEM形貌图
图9  B10腐蚀产物SEM形貌图
图10  B10腐蚀产物元素组成EDS分析
图11  B10去除腐蚀产物后的SEM形貌图
图12  ZCuSn5Pb5Zn5/B10偶对电偶腐蚀动力学分析
图13  ZCuSn5Pb5Zn5/B10偶对在静态海水中的电偶腐蚀机理图
图14  ZCuSn5Pb5Zn5/B10偶对在1 m/s流速下的电偶腐蚀机理图
图15  ZCuSn5Pb5Zn5/B10偶对在3 m/s流速下的电偶腐蚀机理图
图16  ZCuSn5Pb5Zn5/B10偶对在5 m/s流速下的电偶腐蚀机理图
1 Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16
1 周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16
2 Xu X, Wu X W, Zhang G, et al. Tightness failure analysis and protective measures of crevice corrosion for seawater piping in ships [J]. Ship Boat, 2016, 27(5): 63
2 徐 雄, 武兴伟, 张 刚 等. 船舶海水管路缝隙腐蚀密封性能失效分析及其防护措施 [J]. 船舶, 2016, 27(5): 63
3 Wang P, Pang K, Zhang H F, et al. Analysis of corrosion failure of bronze cut-off valve in marine seawater pipe system [J]. Mater. Prot., 2018, 51(10): 143
3 王 培, 逄 昆, 张海峰 等. 船舶海水管路青铜截止阀腐蚀失效分析 [J]. 材料保护, 2018, 51(10): 143
4 Sun J X, Jin X, Li M, et al. Analysis on causes of corrosion perforation in bronze globe valve of certain offshore oil field seawater system [J]. Mater. Prot., 2017, 50(3): 95
4 孙吉星, 金 曦, 李 敏 等. 某海上油田海水系统青铜阀门腐蚀穿孔原因分析 [J]. 材料保护, 2017, 50(3): 95
5 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH 4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
5 王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH 4 + 污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
6 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
7 Zhang Z Q, Guo Z L, Lei Z F. Applications of copper alloy in shipbuilding [J]. Dev. Appl. Mater., 2006, 21(5): 43
7 张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用 [J]. 材料开发与应用, 2006, 21(5): 43
8 Guo Z L, Li W J, Wang H R. Electric couple corrosion of a new type nickel-aluminum-bronze alloy [J]. Mater. Prot., 2005, 38(1): 5
8 郭泽亮, 李文军, 王洪仁. 新型镍铝青铜的电偶腐蚀行为研究 [J]. 材料保护, 2005, 38(1): 5
9 Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot [J]. Tribol. Mater. Surf. Interfaces, 2007, 1: 33
doi: 10.1179/175158407X181471
10 Huang G Q. Corrosion of copper alloys in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 65
10 黄桂桥. 铜合金在海洋飞溅区的腐蚀 [J]. 中国腐蚀与防护学报, 2005, 25: 65
11 Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
11 王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416
12 Wei M M, Yang B J, Liu Y Y, et al. Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 513
12 魏木孟, 杨博均, 刘洋洋 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36: 513
doi: 10.11902/1005.4537.2016.123
13 Guan M E. Research on exfoliation corrosion behavior of copper and copper alloy under the marine environment [J]. Ship Sci. Technol., 2016, 38(8): 184
13 关蒙恩. 铜及铜合金在海洋环境下的腐蚀剥落行为研究 [J]. 舰船科学技术, 2016, 38(8): 184
14 Zhang D L, Liu R, Liu Y S, et al. Multiscale characterization of seawater pipe erosion of B10 copper-nickel alloy welded joints [J]. Sci. Rep., 2022, 12: 2164
doi: 10.1038/s41598-022-06033-w pmid: 35140304
15 Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20: 12
15 杜 娟, 王洪仁, 杜 敏 等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20: 12
16 Hu S B, Liu L, Cui Y, et al. Influence of hydrostatic pressure on the corrosion behavior of 90/10 copper-nickel alloy tube under alternating dry and wet condition [J]. Corros. Sci., 2019, 146: 202
doi: 10.1016/j.corsci.2018.10.036
17 Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
17 王 晓, 刘 峰, 李 焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 119
18 Efird K D. Effect of fluid dynamics on the corrosion of copper-base alloys in sea water [J]. Corrosion, 1977, 33: 3
doi: 10.5006/0010-9312-33.1.3
19 Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
19 陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
20 Bai S Y. Study on B10 alloy seawater pipeline film Formation mechanism and Cathodic protection parameters [D]. Qingdao: China University of Petroleum (East China), 2021
20 白舒宇. B10海水管路成膜机制及阴极保护参数研究 [D]. 青岛: 中国石油大学 (华东), 2021
21 Xing S H, Liu J Z, Bai S Y, et al. Influence of seawater flow speed on galvanic corrosion behavior of B10/B30 alloys coupling [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 391
21 邢少华, 刘近增, 白舒宇 等. 海水流速对B10/B30电偶腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 391
doi: 10.11902/1005.4537.2022.109
22 Liu J Z, Xing S H, Qian Y, et al. Galvanic corrosion behavior of 20# steel/tin bronze couple in flowing seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 127
22 刘近增, 邢少华, 钱 峣 等. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 127
doi: 10.11902/1005.4537.2022.001
[1] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[3] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[4] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[5] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[6] 陈翰林, 马力, 黄国胜, 杜敏. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[7] 邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[8] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[9] 刘近增, 邢少华, 钱峣, 张大磊, 马力. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[10] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[11] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[12] 陈翰林, 马力, 黄国胜, 杜敏. 溶解氧和流速对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
[13] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[14] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[15] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.