Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1273-1283     CSTR: 32134.14.1005.4537.2022.364      DOI: 10.11902/1005.4537.2022.364
  研究报告 本期目录 | 过刊浏览 |
后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究
商强1, 满成1(), 逄昆1, 崔中雨1, 董超芳2, 崔洪芝1
1.中国海洋大学材料科学与工程学院 青岛 266100
2.北京科技大学新材料技术研究院 北京 100083
Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents
SHANG Qiang1, MAN Cheng1(), PANG Kun1, CUI Zhongyu1, DONG Chaofang2, CUI Hongzhi1
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.Institute for Advanced Materials and Technology, University of Science and Technology of Beijing, Beijing 100083, China
引用本文:

商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
Qiang SHANG, Cheng MAN, Kun PANG, Zhongyu CUI, Chaofang DONG, Hongzhi CUI. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1273-1283.

全文: PDF(25018 KB)   HTML
摘要: 

选取含碳量不同的两种SLM-316L不锈钢作为研究对象,以不同碳含量的316L不锈钢的成分作为输入参数,使用Thermal-Calc软件计算获得M23C6等析出相的热力学参数;以此为依据,对SLM-316L不锈钢进行900 ºC后热处理和650 ºC敏化处理,随后采用SEM、TEM和SKPFM等方法研究SLM-316L不锈钢组织结构和析出相的特征,通过DL-EPR和过硫酸铵电解法研究SLM-316L不锈钢的晶间腐蚀行为。结果表明,后热处理导致内部的亚晶与位错开始消失,碳含量较高的1#试样晶界处析出不连续的微米级M23C6,碳含量较低的2#试样中则无M23C6析出;并且后热处理导致两种SLM-316L不锈钢的耐晶间腐蚀性能均下降;后热处理SLM-316L不锈钢的晶间腐蚀主要起源于微米级M23C6周边区域,随后分别围绕M23C6析出相和沿晶界扩散形成腐蚀坑和沟壑。结果表明,在900 °C热处理后,亚晶和位错开始消失,出现不连续的微米级M23C6在高碳含量 (0.0090%),而在含碳量较低 (0.0063%);含碳量较低的SLM-316L不锈钢的抗晶间腐蚀能力高于含碳量较低的SLM-316L。含碳量较低的SLM-316L试样的抗晶间腐蚀性能高于含碳量较高的试样,两种含碳量的SLM-316L不锈钢在900 °C热处理后抗晶间腐蚀性能均有所下降;SLM-316L不锈钢在900 °C热处理后的晶间腐蚀主要起源于微米级M23C6周围的贫铬区,随后分别在M23C6沉淀相周围和晶界扩散处形成腐蚀坑和凿孔。

关键词 选区激光熔化316L不锈钢后热处理晶间腐蚀M23C6    
Abstract

Intergranular corrosion is an important form of failure of austenitic stainless steels such as 316L, and the precipitation of M23C6 and the formation of Cr-poor zones are usually considered to be an important cause of intergranular corrosion. Selected laser melting (SLM) is an emerging metal additive manufacturing technology, and the SLM process of 316L stainless steel has gradually matured in recent years. The rapid condensation of the laser melt pool during SLM processing leads to the existence of sub-grain boundaries, high-density dislocations and other non-equilibrium structures inside the SLM processed 316L stainless steel (later referred to as SLM-316L stainless steel), and the post-heat treatment is used to SLM-316L stainless steel by post-treatment to optimize the organization of the SLM-316L stainless steel can obtain a better overall performance. However, there are few reports on the intergranular corrosion of SLM-316L stainless steel, and the mechanism of the original non-equilibrium structure and post-treatment on the precipitation of M23C6 and the formation of the Cr-depleted zone is not clear. In this paper, two SLM-316L stainless steels with different carbon contents were selected as the object of study, and the thermodynamic parameters of precipitated phases such as M23C6 were obtained by using Thermal-calc software with the composition of 316L stainless steel with different carbon contents as input parameters. Based on this, SLM-316L stainless steel was subjected to 900 ºC post-heat treatment and 650 ºC sensitization treatment. Subsequently, SEM, TEM and SKPFM were used to study the characteristics of the organization and precipitation phases of SLM-316L stainless steel, and the intergranular corrosion behavior of SLM-316L stainless steel was studied by DL-EPR and ammonium persulfate electrolysis. The results showed that sub-grain and dislocation started to disappear after heat treatment at 900 ºC, and discontinuous micron-sized M23C6 precipitated at the grain boundaries of SLM-316L stainless steel with higher carbon content (0.0090%), while no M23C6 precipitated in the specimen with lower carbon content (0.0063%), the intergranular corrosion resistance of SLM-316L with lower carbon content was higher than that of SLM-316L. The intergranular corrosion resistance of SLM-316L with lower carbon content is higher than that of the specimen with higher carbon content, and the intergranular corrosion resistance of SLM-316L stainless steel with both carbon contents decreases after 900 ºC post heat treatment; the intergranular corrosion of SLM-316L stainless steel after heat treatment at 900 ºC originates mainly in the Cr-poor zone around micron-sized M23C6, followed by the formation of corrosion pits and gouges around the M23C6 precipitation phase and along the grain boundary diffusion, respectively.

Key wordsselective laser melting    316L stainless steel    post-heat treatment    intergranular corrosion    M23C6
收稿日期: 2022-11-21      32134.14.1005.4537.2022.364
ZTFLH:  TG172  
基金资助:国家重点研发计划(2021YFE0114000);国家自然科学基金(51901216);国家自然科学基金(U2106216);国家科技基础资源调查专项(2019FY101400);上海市电力材料防护与新材料重点实验室项目
通讯作者: 满成,E-mail: mancheng@ouc.edu.cn,研究方向为金属材料腐蚀与防护
Corresponding author: MAN Cheng, E-mail: mancheng@ouc.edu.cn
作者简介: 商强,男,1998年生,硕士生
图1  不同碳含量316L不锈钢的Thermal-Calc计算结果
SampleCrNiMoMnSiPSCNFe
a17.510.42.71.20.40.020.010.020.15Balance
b17.510.42.71.20.40.020.010.040.15Balance
c17.510.42.71.20.40.020.010.060.15Balance
d17.510.42.71.20.40.020.010.080.15Balance
e17.510.42.71.20.40.020.010.120.15Balance
表1  Thermal-Calc计算时的参数成分输入 (不同含碳量316L不锈钢) (mass fraction / %)
图2  不同热处理后的SLM-316L不锈钢金相组织结构
图3  1# SLM-316L不锈钢试样组织结构的微观结构
图4  不同热处理条件下两种SLM-316L不锈钢SEM图像
图5  原位观测不同电解时间SLM 316L不锈钢晶间腐蚀形貌的SEM像
图6  1# SLM-316L不锈钢经过900 ℃后热处理析出的M23C6的SKPFM形貌和电势测量结果
图7  两种碳含量的SLM 316L不锈钢的DL-EPR测试结果图:
图8  经过不同热处理后两种SLM 316L不锈钢的电解2 min晶间腐蚀形貌
图9  原位观察0~300 s电解浸蚀SLM-316L不锈钢的CLSM图
1 Guo N, Mao X M, Hui X R, et al. Corrosion behavior of 316L stainless steel in media containing pyomelanin secreted by Pseudoalteromonas lipolytica [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 743
1 郭 娜, 毛晓敏, 惠芯蕊 等. 海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 743
2 Wang Y, Yan X Y, Man C, et al. Microstructure and corrosion behavior of SLM-Ti6Al4V with different fabrication angles in F--containing solutions [J]. Chin. J. Eng., 2021, 43: 676
2 王 尧, 阎笑盈, 满 成 等. 不同打印角度SLM-Ti6Al4V组织结构及其在含氟离子溶液中的腐蚀行为 [J]. 工程科学学报, 2021, 43: 676
3 Zhang H W, Man C, Dong C F, et al. The corrosion behavior of Ti6Al4V fabricated by selective laser melting in the artificial saliva with different fluoride concentrations and pH values [J]. Corros. Sci., 2021, 179: 109097
doi: 10.1016/j.corsci.2020.109097
4 Man C, Duan Z W, Cui Z Y, et al. The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting [J]. Mater. Lett., 2019, 243: 157
doi: 10.1016/j.matlet.2019.02.047
5 Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
doi: 10.1016/j.corsci.2020.108520
6 Kong D C, Ni X Q, Dong C F, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 276: 293
doi: 10.1016/j.electacta.2018.04.188
7 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
8 Zhou C S, Wang J, Hu S Y, et al. Enhanced corrosion resistance of additively manufactured 316L stainless steel after heat treatment [J]. J. Electrochem. Soc., 2020, 167: 141504
doi: 10.1149/1945-7111/abc10e
9 Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
10 Dai N W, Zhang J X, Chen Y, et al. Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V alloy [J]. J. Electrochem. Soc., 2017, 164: C428
doi: 10.1149/2.1481707jes
11 Man C, Dong C F, Kong D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corros. Sci., 2019, 151: 108
doi: 10.1016/j.corsci.2019.02.020
12 Watanabe T. An approach to grain boundary design of strong and ductile polycrystals [J]. Res. Mech., 1984, 11: 47
13 Laleh M, Hughes A E, Tan M Y, et al. Grain boundary character distribution in an additively manufactured austenitic stainless steel [J]. Scr. Meter., 2021, 192: 115
14 Laleh M, Hughes A E, Xu W, et al. On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting [J]. Corros. Sci., 2019, 161: 108189
doi: 10.1016/j.corsci.2019.108189
15 Yin H, Song M, Deng P, et al. Thermal stability and microstructural evolution of additively manufactured 316L stainless steel by laser powder bed fusion at 500-800 ℃ [J]. Addit. Manuf., 2021, 41: 101981
16 Duan Z W, Man C, Cui Z Y, et al. Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting [J]. Chin. J. Eng., 2023, 45: 560
16 段智为, 满 成, 崔中雨 等. 热处理对SLM-316L不锈钢组织结构及钝化行为的影响机制 [J]. 工程科学学报, 2023, 45: 560
17 Geenen K, Röttger A, Theisen W. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting [J]. Mater. Corros., 2017, 68: 764
18 Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid [J]. Appl. Surf. Sci., 2019, 467-468: 193
doi: 10.1016/j.apsusc.2018.10.150
19 Chao Q, Thomas S, Birbilis N, et al. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2021, 821A: 141611
20 Kurzynowski T, Gruber K, Stopyra W, et al. Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting [J]. Mater. Sci. Eng., 2018, 718A: 64
21 Cruz V, Qiu Y, Birbilis N, et al. Stress corrosion cracking of 316L manufactured by laser powder bed fusion in 6% ferric chloride solution [J]. Corros. Sci., 2022, 207: 110535
doi: 10.1016/j.corsci.2022.110535
22 Terada M, Saiki M, Costa I, et al. Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970 [J]. J. Nucl. Mater., 2006, 358: 40
doi: 10.1016/j.jnucmat.2006.06.010
23 Zhou C S, Hu S Y, Shi Q Y, et al. Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing [J]. Corros. Sci., 2020, 164: 108353
doi: 10.1016/j.corsci.2019.108353
24 Yan F Y, Xiong W, Faierson E, et al. Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion [J]. Scr. Mater., 2018, 155: 104
doi: 10.1016/j.scriptamat.2018.06.011
[1] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[2] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[3] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[4] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[5] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[6] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[7] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[8] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[9] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[10] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[11] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[13] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[14] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[15] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.