Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1303-1311     CSTR: 32134.14.1005.4537.2022.375      DOI: 10.11902/1005.4537.2022.375
  研究报告 本期目录 | 过刊浏览 |
A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究
郭昭, 李晗, 崔中雨(), 王昕, 崔洪芝
中国海洋大学材料科学与工程学院 青岛 266100
Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments
GUO Zhao, LI Han, CUI Zhongyu(), WANG Xin, CUI Hongzhi
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
Zhao GUO, Han LI, Zhongyu CUI, Xin WANG, Hongzhi CUI. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1303-1311.

全文: PDF(15675 KB)   HTML
摘要: 

选用A100超高强度钢作为研究材料,通过电化学实验、浸泡实验及慢应变速率拉伸试验等测试方法,开展其在海洋大气动态薄液膜环境和人工海水环境下的失效行为研究。结果表明,相较于人工海水溶液环境,A100钢在薄液膜环境中的电荷转移电阻显著降低,腐蚀得到明显促进,腐蚀产物沉积更为明显。薄液膜环境加速了氧还原过程,促进了腐蚀产物的沉积。同时,腐蚀产物中Fe3+还原反应的发生与充足的溶解氧协同加速了腐蚀过程,腐蚀产物下发生了明显的均匀腐蚀。A100钢在薄液膜环境中比在人工海水环境中的应力腐蚀开裂 (SCC) 敏感性更高。这是由于薄液膜环境促进了腐蚀的发生,使得A100钢的有效承载面积下降,同时腐蚀产物膜层下的酸化过程促进了氢析出反应的进行,加速了SCC过程,二者使得由强度损失和延伸率损失得到的SCC敏感性显著升高。

关键词 超高强度钢动态薄液膜海水腐蚀应力腐蚀开裂    
Abstract

In order to understand the adaptability and failure mechanism of landing gear materials for amphibious aircraft in marine environment, the failure behavior of A100 ultra-high strength steel beneath an unsteady thin electrolyte layer (TEL) and in artificial seawater (ASW) was studied via immersion test, slow strain rate tensile test and electrochemical measurements. The results show that in comparison with the test in ASW, the charge transfer resistance of A100 steel beneath TEL is significantly reduced, correspondingly, the steel corrosion is significantly promoted, and the deposition of corrosion products is more obvious. Due to the existence of TEL, the oxygen reduction process and the deposition of corrosion products was all promoted. Meanwhile, the corrosion process under the dynamic TEL was stimulated due to the presence of reduction reaction of the Fe3+ within the corrosion products accompanied with the efficient dissolved oxygen, which then resulted in the occurrence of obvious uniform corrosion beneath the corrosion products. Similarly, A100 steel is more sensitive to stress corrosion cracking (SCC), when the test steel is covered with TEL, because the accelerating corrosion process may lead to the decreases of the effective bearing cross-sectional area of A100 steel. At the same time, the acidification process beneath the corrosion product layer promotes the hydrogen precipitation reaction and accelerates the SCC reaction process. It follows that the significant increase of the sensitivity of SCC for A100 steel may be ascribed to both the strength loss and elongation loss during the SCC testing in TEL environment.

Key wordsultra-high strength steel    dynamic thin electrolyte layer    corrosion    SCC
收稿日期: 2022-12-01      32134.14.1005.4537.2022.375
ZTFLH:  TG172  
基金资助:装备预先研究领域基金(80922010601);山东省重大科技创新工程(2020CXGC010305)
通讯作者: 崔中雨,E-mail: cuizhongyu@ouc.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn
作者简介: 郭昭,男,1998年生,硕士生
图1  A100钢的显微组织形貌
图2  薄液膜环境中的电化学测试电化学试样及测试体系示意图
图3  拉伸试样示意图及自制薄液膜拉伸装置示意图
图4  A100钢在ASW中浸泡24和72 h后的腐蚀产物形貌和腐蚀表面形貌及EDS结果
图5  服役态A100在TEL中腐蚀24和72 h后的腐蚀产物形貌和腐蚀表面形貌及EDS结果
图6  A100钢在溶液环境和薄液膜环境中浸泡24和72 h时XRD分析
图7  A100钢在溶液和薄液膜环境中的EIS图及等效电路
Solution

Rs

Ω·cm2

CPEdl

Ω-1·cm-2·S n

n1

Rct

Ω·cm2

CPEf

Ω-1·cm-2·S n

n2

Rf

Ω·cm2

Rp

Ω·cm2

χ2
ASW18.13.708×10-40.791045.91.565×10-40.8511021.012066.91.755×10-4
TEL162.63.362×10-40.53229.86.744×10-30.7110340.010569.84.476×10-3
表1  A100钢在ASW和TEL中电化学阻抗谱拟合的电化学参数
图8  A100钢在两种腐蚀环境中应力-应变曲线和以伸长率损失为指标的SCC敏感性
图9  A100钢在空气、人工海水和薄液膜中的断口微观形貌
图10  A100钢在人工海水环境和薄液膜环境中应力腐蚀机理示意图
1 Niu Y E, Zhao P P, Li N, et al. Research status and application of ultra-high strength steel at home and abroad [J]. J. Ordnance Equip. Eng., 2021, 42(7): 274
1 牛艳娥, 赵芃沛, 李宁 等. 国内外超高强度钢的研究现状及应用 [J]. 兵器装备工程学报, 2021, 42(7): 274
2 Zhao B, Xu G X, He F, et al. Present status and prospect of Ultra High strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 37(6): 1
2 赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1
3 Dong J H, Han E-H, Ke W. Introduction to atmospheric corrosion research in China [J]. Sci. Technol. Adv. Mater., 2007, 8: 559
doi: 10.1016/j.stam.2007.08.010
4 Feng L M, Shen H Q, Zhu Y J, et al. Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres [J]. Sci. Rep., 2017, 7: 41260
doi: 10.1038/srep41260 pmid: 28120906
5 Zhang X, Zhang J X, Chen Q M, et al. Effect of direct current electric field intensity and electrolyte layer thickness on oxygen reduction in simulated atmospheric environment [J]. Corros. Sci., 2019, 148: 206
doi: 10.1016/j.corsci.2018.12.013
6 Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 504
6 赵晋斌, 赵起越, 陈林恒 等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 504
doi: 10.11902/1005.4537.2019.032
7 Huang H L, Bu F R. The influence of different locations on copper corrosion with different external electric fields under a chloride-containing thin electrolyte layer [J]. Corros. Eng. Sci. Technol., 2019, 54: 257
doi: 10.1080/1478422X.2019.1576351
8 Huang H L, Bu F R, Tian J, et al. Influence of direct current electric field on corrosion behavior of tin under a thin electrolyte layer [J]. J. Electron. Mater., 2017, 46: 6936
doi: 10.1007/s11664-017-5727-y
9 Martin H J, Horstemeyer M F, Wang P T. Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy [J]. Corros. Sci., 2010, 52: 3624
doi: 10.1016/j.corsci.2010.07.009
10 Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, 685A: 145
11 Hu Y B, Dong C F, Luo H, et al. Study on the hydrogen embrittlement of aermet100 using hydrogen permeation and SSRT techniques [J]. Metall. Mater. Trans., 2017, 48A: 4046
12 Thomas R L S, Scully J R, Gangloff R P. Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2003, 34A: 327
13 Zhang T, Chen C M, Shao Y W, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921
doi: 10.1016/j.electacta.2008.05.074
14 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
15 Wu W, Hao W K, Liu Z Y, et al. Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments [J]. Constr. Build. Mater., 2020, 239: 117903
doi: 10.1016/j.conbuildmat.2019.117903
16 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
17 Zhao Q Y, Fan Y, Fan E D, et al. Influence factors and corrosion resistance criterion of low-alloy structural steel [J]. Chin. J. Eng., 2021, 43: 255
17 赵起越, 范 益, 范恩点 等. 低合金结构钢腐蚀的影响因素及其耐蚀性判据 [J]. 工程科学学报, 2021, 43: 255
18 Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Sci. Eng., 2012, (1): 42
18 于 美, 董 宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, (1): 42
19 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
19 翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
doi: 10.11902/1005.4537.2019.272
20 Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811
20 孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811
doi: 10.11902/1005.4537.2020.172
21 Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469
21 艾芳芳, 陈义庆, 钟 彬 等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469
doi: 10.11902/1005.4537.2019.282
22 Wu L F, Li S M, Liu J H, et al. SCC evaluation of ultra-high strength steel in acidic chloride solution [J]. J. Cent. South Univ., 2012, 19: 2726
doi: 10.1007/s11771-012-1333-6
23 Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corros. Sci., 2006, 48: 4378
doi: 10.1016/j.corsci.2006.02.011
24 Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
doi: 10.1016/j.corsci.2022.110490
25 Shao X F, Cao B, Ce L X, et al. Relations between hydrogen-induced cracking and anode dissolution of pipeline steel X70 in near-neutral environment [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 76
25 邵绪分, 曹 备, 车立新 等. X70管线钢近中性环境氢致开裂与阳极溶解的关系 [J]. 中国腐蚀与防护学报, 2008, 28: 76
26 Larignon C, Alexis J, Andrieu E, et al. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media [J]. Corros. Sci., 2013, 69: 211
doi: 10.1016/j.corsci.2012.12.005
27 Huang Y L, Zhu Y Y. Hydrogen ion reduction in the process of iron rusting [J]. Corros. Sci., 2005, 47: 1545
doi: 10.1016/j.corsci.2004.07.044
[1] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[2] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[3] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[4] 张彭辉, 李显超, 仝宏涛, 张宇, 陈诚. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1075-1080.
[5] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[6] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[7] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[8] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[9] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[10] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[11] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[12] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[15] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.