Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1225-1236     CSTR: 32134.14.1005.4537.2022.366      DOI: 10.11902/1005.4537.2022.366
  综合评述 本期目录 | 过刊浏览 |
海底管道CO2 腐蚀特性及预测模型研究进展
朱烨森1,2(), 蔡锟1, 胡葆文1, 夏云秋1, 胡涛勇1, 黄一2
1.中国电建集团华东勘测设计研究院有限公司 杭州 311122
2.大连理工大学 工业装备结构分析国家重点实验室 大连 116024
Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines
ZHU Yesen1,2(), CAI Kun1, HU Baowen1, XIA Yunqiu1, HU Taoyong1, HUANG Yi2
1.Power China Huadong Engineering Co., Ltd., Hangzhou 311122, China
2.State Key Laboratory Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
引用本文:

朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
Yesen ZHU, Kun CAI, Baowen HU, Yunqiu XIA, Taoyong HU, Yi HUANG. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1225-1236.

全文: PDF(3130 KB)   HTML
摘要: 

介绍了海底管道的CO2腐蚀机理,具体涉及化学反应过程、电化学反应过程、传质过程和成膜过程。其次,总结了海底管道CO2腐蚀影响因素,主要包括元素成分、显微组织决定的材料自身因素,以及介质成分、温度、pH等决定的外部环境因素。汇总了各影响因素对腐蚀速率的经验/半经验规律。重点归纳了海底管道CO2腐蚀模型,详细介绍了原理模型法和经验模型法在腐蚀评估和预测中的控制步骤和边界条件。

关键词 海底管道CO2腐蚀腐蚀模型腐蚀预测腐蚀评估    
Abstract

Firstly, the mechanism of CO2 induced corrosion of submarine pipeline is introduced, including chemical reaction process, electrochemical reaction process, mass transfer process and film formation process. Secondly, the influencing factors of CO2 induced corrosion of submarine pipelines are summarized, which mainly include material factors determined by chemical composition and microstructure, and external environmental factors determined by medium composition, temperature and pH, etc. At the same time, the empirical/semi-empirical regulations of the corrosion rate versus influencing factors are summarized. Finally, the models of CO2 induced corrosion of submarine pipeline is summarized, and the control steps and boundary conditions of the principle model and empirical model for corrosion-assessment and -prediction are introduced in detail.

Key wordssubmarine pipeline    carbon dioxide corrosion    corrosion model    corrosion prediction    corrosion assessment
收稿日期: 2022-11-23      32134.14.1005.4537.2022.366
ZTFLH:  TG174  
基金资助:中国博士后科学基金(2022M722955);工业装备结构分析国家重点实验室开放课题基金(GZ22118)
通讯作者: 朱烨森,E-mail: zhuyesen@163.com,研究方向为海工/水工金属结构腐蚀监测及防腐
Corresponding author: ZHU Yesen, E-mail: zhuyesen@163.com
作者简介: 朱烨森,男,1992年生,博士生
图1  CO2分压对腐蚀及成膜的影响[87]
图2  pH对腐蚀及成膜的影响[87]
图3  CO2腐蚀模型示意图
Process

I0, ref 

A·m-2

Cref, H+mol·L-1

Cref, H2CO3

mol·L-1

ΔH

kJ·mol-1

Tref 

K

b

V

Erev

V

Fe oxidation1--37.5293.152.3RT/1.5F-0.488
H+ reduction0.020.0001-30293.152.3RT/0.5F-0.24
H2CO3 reduction0.014-0.000135293.152.3RT/0.5F-0.24
表1  交换电流密度计算参数[32,109]
1 Chen Z T. Experimental study of weld corrosion in the submarine pipeline expansion bend installed from WC13-1 platform to FPSO [D]. Chengdu: Southwest Petroleum University, 2018
1 陈卓婷. WC13-1平台至FPSO海底管道膨胀弯焊缝腐蚀实验研究 [D]. 成都: 西南石油大学, 2018
2 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data to prevent disasters [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
3 Zhang C R, Yu S Y. Carbon Dioxide Gas Well Testing and Evaluation Methods [M]. Beijing: Petroleum Industry Press, 1999
3 张川如, 虞绍永. 二氧化碳气井测试与评价方法 [M]. 北京: 石油工业出版社, 1999
4 Hua Y. An experimental study of corrosion for long distance carbon transportation pipelines [D]. Leeds: University of Leeds, 2015
5 Wang Z Z. Galvanic corrosion and inhibition mechanism of N80 carbon steel-13Cr stainless steel under supercritical CO2 conditions [D]. Wuhan: Huazhong University of Science and Technology, 2019
5 王准章. 超临界CO2环境中N80碳钢与13Cr不锈钢电偶腐蚀及缓蚀机理 [D]. 武汉: 华中科技大学, 2019
6 Azzolina N A, Nakles D V, Gorecki C D, et al. CO2 storage associated with CO2 enhanced oil recovery: a statistical analysis of historical operations [J]. Int. J. Greenhouse Gas Control, 2015, 37: 384
doi: 10.1016/j.ijggc.2015.03.037
7 Boot-Handford M E, Abanades J C, Anthony E J, et al. Carbon capture and storage update [J]. Energy Environ. Sci., 2014, 7: 130
doi: 10.1039/C3EE42350F
8 Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2–water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
doi: 10.1016/j.ijggc.2010.11.008
9 White W E. A working party report on predicting CO2 corrosion in the oil and gas industry: European federation of corrosion publications, number 13 (published for the EFC by the Institute of Materials, London, U.K., 1994), 173 pages, $100.00 (available in the U.S.A. from Ashgate Publishing Company, Brookfield, VT) [J]. Mater. Charact., 1995, 35: 141
doi: 10.1016/1044-5803(95)80113-8
10 Shen K L. Corrosion characteristics and mechanism of supercritical CO2 pipeline in carbon capture and storage (CCS) [D]. Chongqing: Chongqing University of Science and Technology, 2018
10 沈溃领. 面向碳捕获与封存 (CCS) 的超临界CO2输送管道腐蚀特性及机理研究 [D]. 重庆: 重庆科技学院, 2018
11 Johnson K, Holt H, Helle K, et al. Mapping of potential HSE issues related to large-scale capture, transport and storage of CO2 [R]. Horvik: Det Norsk Veritas, 2008
12 Videm K, Dugstad A. Effect of flow rate, pH, Fe2+ concentration and steel quality on the CO2 corrosion of carbon steels [A]. Proceedings of the NACE Corrosion Conference and Expo 1987 [C]. San Francisco, 1987
13 Jia Z J, Li X G, Liang P, et al. Electrochemical characterization of passive film formed under different potential condition on X70 pipeline steel in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 241
13 贾志军, 李晓刚, 梁平 等. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 241
14 Jia Z J, Du C W, Li X G. Effect of temperature on electrochemical corrosion behavior of N80 steel in CO2 saturated NaCl solution [J]. Corros. Prot., 2011, 32: 613
14 贾志军, 杜翠薇, 李晓刚. 温度对N80钢在CO2饱和的NaCl溶液中的腐蚀电化学行为的影响 [J]. 腐蚀与防护, 2011, 32: 613
15 Schmitt G A, Mueller M. Critical wall shear stresses in CO2 corrosion of carbon steel [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
16 Feng B, Yang M, Li B F, et al. Mechanism and influence factors of CO2 corrosion [J]. Liaoning Chem. Ind., 2010, 39: 976
16 冯 蓓, 杨 敏, 李秉风 等. 二氧化碳腐蚀机理及影响因素 [J]. 辽宁化工, 2010, 39: 976
17 Gopal M, Rajappa S. Effect of multiphase slug flow on the stability of corrosion product layer [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
18 Ramachandran S, Campbell S, Ward M B. Interactions and properties of corrosion inhibitors with by-product layers [J]. Corrosion, 2001, 57: 508
doi: 10.5006/1.3290376
19 Crolet J L, Thévenot N, Nesic S. Role of conductive corrosion products on the protectiveness of corrosion layers [A]. Proceedings of the Corrosion 96 [C]. Denver, 1996
20 Cui M W. Study on CO2 internal corrosion and residual strength of multiphase offshore pipeline [D]. Qingdao: China University of Petroleum (East China), 2014
20 崔铭伟. 多相流海管CO2内腐蚀及剩余强度研究 [D]. 青岛: 中国石油大学(华东), 2014
21 Zhao C J. Analysis of multiphase flow containing CO2 corrosion assessment technology [D]. Qingdao: China University of Petroleum (East China), 2016
21 赵常俊. 含CO2多相流管道内腐蚀评价分析 [D]. 青岛: 中国石油大学(华东), 2016
22 Chen J K, Wang Y S, Zhang W. FeCO3 nucleation and growth behavior and its effect on corrosion evolution during CO2 corrosion process of carbon steel based on lattice Boltzmann method [J]. J. Eng. Thermophys., 2019, 40: 2843
22 陈聚凯, 王跃社, 张 文. 基于格子Boltzmann方法的碳钢CO2腐蚀产物(FeCO3)成核生长行为及其腐蚀演化机理研究 [J]. 工程热物理学报, 2019, 40: 2843
23 Zhao G X, Wang Y C, Zhang S Q, et al. Influence mechanism of H2S/CO2-charging on corrosion of J55 steel in an artificial solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 785
23 赵国仙, 王映超, 张思琦 等. H2S/CO2对J55钢腐蚀的影响机制 [J]. 中国腐蚀与防护学报, 2022, 42: 785
doi: 10.11902/1005.4537.2021.262
24 Chen C F. Research on electrochemical behavior and corrosion scale characteristics of CO2 corrosion for tubing and casing steel [D]. Xi'an: Northwestern Polytechnical University, 2002
24 陈长风. 油套管钢CO2腐蚀电化学行为与腐蚀产物膜特性研究 [D]. 西安: 西北工业大学, 2002
25 Li J Z, Wang H C, Li N. The hazards and research status of carbon dioxide corrosion in oil and gas [J]. Guangzhou Chem. Ind., 2011, 39(21): 21
25 李建忠, 王海成, 李 宁. 油气田开发中二氧化碳腐蚀的危害与研究现状 [J]. 广州化工, 2011, 39(21): 21
26 Zhu D F. Influence of corrosion scale on CO2 corrosion of marine gas pipeline [J]. Corros. Prot., 2019, 40: 633
26 朱道峰. 腐蚀垢层对海洋天然气管道CO2腐蚀过程的影响 [J]. 腐蚀与防护, 2019, 40: 633
27 Dugstad A. Mechanism of protective film formation during CO2 corrosion of carbon steel [A]. Proceedings of the Corrosion 98 [C]. San Diego, 1998
28 Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production—a compendium [J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
29 Alizadeh M, Bordbar S. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution [J]. Corros. Sci., 2013, 70: 170
doi: 10.1016/j.corsci.2013.01.026
30 Wei L, Pang X L, Liu C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment [J]. Corros. Sci., 2015, 100: 404
doi: 10.1016/j.corsci.2015.08.016
31 Nešić S, Lee K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 3: film growth model [J]. Corrosion, 2003, 59: 616
doi: 10.5006/1.3277592
32 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification [J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
33 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
34 Nazari M H, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Des., 2010, 31: 3559
doi: 10.1016/j.matdes.2010.01.038
35 Pessu F, Barker R, Neville A. The influence of pH on localized corrosion behavior of X65 carbon steel in CO2-saturated brines [J]. Corrosion, 2015, 71: 1452
doi: 10.5006/1770
36 Zhang Y C, Pang X L, Qu S P, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]. Corros. Sci., 2012, 59: 186
doi: 10.1016/j.corsci.2012.03.006
37 Gao K W, Yu F, Pang X L, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates [J]. Corros. Sci., 2008, 50: 2796
doi: 10.1016/j.corsci.2008.07.016
38 Hassani S, Roberts K P, Shirazi S A, et al. Flow loop study of chloride concentration effect on erosion, corrosion and erosion-corrosion of carbon steel in CO2 saturated systems [A]. Proceedings of the Corrosion 2011 [C]. Houston, 2011
39 Al-Aithan G H, Al-Mutahar F M, Shadley J R, et al. A mechanistic erosion-corrosion model for predicting iron carbonate (FeCO3) scale thickness in a CO2 environment with sand [A]. Proceedings of the Corrosion 2014 [C]. San Antonio, 2014
40 Li T, Yang Y J, Gao K W, et al. Mechanism of protective film formation during CO2 corrosion of X65 pipeline steel [J]. J. Univ. Sci. Technol. Beijing, Miner., Metall., Mater., 2008, 15: 702
41 Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and cr steels [J]. Adv. CO2 Corros., 1984, 22: 91
42 Han J B, Young D, Colijn H, et al. Chemistry and structure of the passive film on mild steel in CO2 corrosion environments [J]. Ind. Eng. Chem. Res., 2009, 48: 6296
doi: 10.1021/ie801819y
43 Tanupabrungsun T, Young D, Brown B, et al. Construction and verification of Pourbaix diagrams for CO2 corrosion of mild steel valid up to 250 ℃ [A]. Proceedings of the Corrosion 2012 [C]. Salt Lake City, 2012
44 Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
doi: 10.1002/sia.v41:6
45 Shannon D W. Role of chemical components in geothermal brine on corrosion [A]. Proceedings of the NACE Corrosion Conference and Expo 1978 [C]. Houston, 1978
46 Tanupabrungsun T, Brown B, Nesic S. Effect of ph on CO2 corrosion of mild steel at elevated temperatures [A]. Proceedings of the Corrosion 2013 [C]. Orlando, 2013
47 Zhu Y S, Xu Y Z, Wang M Y, et al. Understanding the influences of temperature and microstructure on localized corrosion of subsea pipeline weldment using an integrated multi-electrode array [J]. Ocean Eng., 2019, 189: 106351
doi: 10.1016/j.oceaneng.2019.106351
48 Cheng Y F, Wilmott M, Luo J L. The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise [J]. Appl. Surf. Sci., 1999, 152: 161
doi: 10.1016/S0169-4332(99)00328-1
49 Nyborg R, Dugstad A. Understanding and prediction of mesa corrosion attack [A]. Proceedings of the Corrosion 2003 [C]. San Diego, 2003
50 Schmitt G, Bosch C, Mueller M, et al. A probabilistic model for flow induced localized corrosion [A]. Proceedings of the Corrosion 2000 [C]. Orlando, 2000
51 Zhu Y S, Xu Y Z, Song S D, et al. Probing the nonuniform corrosion of pipeline weldments under stepwise increasing solution temperature using a coupled multielement electrical resistance sensor [J]. Mater. Corros., 2020, 71: 1386
52 Szklarska-Smialowska Z. Mechanism of pit nucleation by electrical breakdown of the passive film [J]. Corros. Sci., 2002, 44: 1143
doi: 10.1016/S0010-938X(01)00113-5
53 Li H. A mechanistic model for CO2 localized corrosion of carbon steel [D]. Ohio: Ohio University, 2011
54 Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
doi: 10.1016/j.corsci.2019.06.016
55 Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
55 李瑞涛, 肖 博, 刘 晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327
doi: 10.11902/1005.4537.2020.115
56 Gulbrandsen E, Stangeland A, Burchardt T, et al. Effect of precorrosion on the performance of inhibitors for CO2 corrosion of carbon steel [A]. Proceedings of the Corrosion 98 [C]. San Diego, 1998
57 Nyborg R, Gulbrandsen E, Loeland T, et al. Effect of steel microstructure and composition on inhibition of CO2 corrosion [A]. Proceedings of the Corrosion 2000 [C]. Orlando, 2000
58 Paolinelli L D, Pérez T, Simison S N. The effect of pre-corrosion and steel microstructure on inhibitor performance in CO2 corrosion [J]. Corros. Sci., 2008, 50: 2456
doi: 10.1016/j.corsci.2008.06.031
59 Kato C, Otoguro Y, Kado S, et al. Grooving corrosion in electric resistance welded steel pipe in sea water [J]. Corros. Sci., 1978, 18: 61
doi: 10.1016/S0010-938X(78)80076-6
60 Duran C, Treiss E, Herbsleb G. The resistance of high frequency inductive welded pipe to grooving corrosion in salt water [J]. Mater. Perform., 1986, 25: 41
61 Sun Q X. Corrosion and Protection of Materials [M]. Beijing: Metallurgical Industry Press, 2001
61 孙秋霞. 材料腐蚀与防护 [M]. 北京: 冶金工业出版社, 2001
62 Sk M H, Abdullah A M, Qi J, et al. The effects of Cr/Mo micro-alloying on the corrosion behavior of carbon steel in CO2-saturated (sweet) brine under hydrodynamic control [J]. J. Electrochem. Soc., 2018, 165: C278
doi: 10.1149/2.1011805jes
63 Wang X H, Li Z S, Tang Y F, et al. Influence of Cr content on characteristics of corrosion product film formed on several steels in artifitial stratum waters containing CO2-H2S-Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1043
63 王小红, 李子硕, 唐御峰 等. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1043
doi: 10.11902/1005.4537.2021.272
64 Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
64 梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
65 Alves V A, Brett C M A, Cavaleiro A. Influence of heat treatment on the corrosion of high speed steel [J]. J. Appl. Electrochem., 2001, 31: 65
doi: 10.1023/A:1004157623466
66 Asahi H, Kushida T, Kimura M, et al. Role of microstructures on stress corrosion cracking of pipeline steels in carbonate-bicarbonate solution [J]. Corrosion, 1999, 55: 644
doi: 10.5006/1.3284018
67 Pan X, Ren Z, Lian J B, et al. Effect of heat treatment process on corrosion behavior of super 13Cr stainless steel in CO2-saturated oilfield formation aqueous solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 752
67 潘 鑫, 任 泽, 连景宝 等. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2022, 42: 752
68 Clover D, Kinsella B, Pejcic B, et al. The influence of microstructure on the corrosion rate of various carbon steels [J]. J. Appl. Electrochem., 2005, 35: 139
doi: 10.1007/s10800-004-6207-7
69 Mora-Mendoza J L, Turgoose S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions [J]. Corros. Sci., 2002, 44: 1223
doi: 10.1016/S0010-938X(01)00141-X
70 López D A, Schreiner W H, de Sánchez S R, et al. The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization [J]. Appl. Surf. Sci., 2003, 207: 69
doi: 10.1016/S0169-4332(02)01218-7
71 López D A, Schreiner W H, de Sánchez S R, et al. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: an XPS and SEM characterization [J]. Appl. Surf. Sci., 2004, 236: 77
doi: 10.1016/j.apsusc.2004.03.247
72 Zhu Y S, Xu Y Z, Li K T, et al. Experimental study on non-uniform corrosion of elbow-to-pipe weldment using multiple ring form electrical resistance sensor array [J]. Measurement, 2019, 138: 8
doi: 10.1016/j.measurement.2019.02.035
73 Huang H H, Tsai W T, Lee J T. The influences of microstructure and composition on the electrochemical behavior of A516 steel weldment [J]. Corros. Sci., 1994, 36: 1027
doi: 10.1016/0010-938X(94)90201-1
74 Deen K M, Ahmad R, Khan I H, et al. Microstructural study and electrochemical behavior of low alloy steel weldment [J]. Mater. Des., 2010, 31: 3051
doi: 10.1016/j.matdes.2010.01.025
75 Al-Hassan S, Mishra B, Olson D L, et al. Effect of microstructure on corrosion of steels in aqueous solutions containing carbon dioxide [J]. Corrosion, 1998, 54: 480
doi: 10.5006/1.3284876
76 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
77 Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials [J]. Corros. Sci., 2012, 62: 90
doi: 10.1016/j.corsci.2012.04.040
78 Kuang X R. Research in gathering pipeline with CO2 corrosion and material selection technology [D]. Xi'an: Xi'an Shiyou University, 2011
78 邝献任. 含CO2集输管线腐蚀及选材技术研究 [D]. 西安: 西安石油大学, 2011
79 Li C F. Research on CO2 corrosion mechanism and protection technology during oil and gas development [D]. Chengdu: Southwest Petroleum University, 2005
79 李春福. 油气开发过程中的CO2腐蚀机理及防护技术研究 [D]. 成都: 西南石油学院, 2005
80 Oddo J E, Tomson M B. Simplified calculation of CACO3 saturation at high temperatures and pressures in brine solutions [J]. J. Pet. Technol., 1982, 34: 1583
doi: 10.2118/10352-PA
81 Sun W. Kinetics of iron carbonate and iron sulfide scale formation in CO2/H2S corrosion [D]. Ohio: Ohio University, 2006
82 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
82 明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
83 Nesic S, Lee J, Ruzic V. A mechanistic model of iron carbonate film growth and the effect on CO2 corrosion of mild steel [A]. Proceedings of the Corrosion 2002 [C]. Denver, 2002
84 de Waard C, Lotz U, Milliams D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47: 976
doi: 10.5006/1.3585212
85 Zhang G, You Y, Liu D. Experimental study on the effect of CO2 partial pressure on the corrosion of N80 steel [A]. Proceedings of 2019 Aviation Equipment Service Support and Maintenance Technology Forum and China Aviation Industry Technology and Equipment Engineering Association Annual Conference [C]. Nanchang, 2019
85 张 刚, 由 洋, 刘 栋. CO2分压对N80钢腐蚀影响的试验测试研究 [A]. 2019航空装备服务保障与维修技术论坛暨中国航空工业技术装备工程协会年会论文集 [C]. 南昌, 2019
86 Huang T J, Ma F, Fan D Y, et al. Study on oxygen corrosion behavior of N80 casing steel by partial pressure ratio of CO2 and O2 [J]. Pet. Knowl., 2020, (2): 58
86 黄天杰, 马 锋, 范冬艳 等. CO2和O2的分压比对N80套管钢氧腐蚀行为研究 [J]. 石油知识, 2020, (2): 58
87 Han J B. Galvanic mechanism of localized corrosion for mild steel in carbon dioxide environments [D]. Ohio: Ohio University, 2009
88 Yang Z C, Cai Y Y, Zhu Y S, et al. Effects of medium condition on CO2 corrosion of X65 pipeline steel and its welded joint [J]. Corros. Prot., 2019, 40: 717
88 杨壮春, 蔡伊扬, 朱烨森 等. 介质条件对X65管线钢及其焊接接头CO2腐蚀的影响 [J]. 腐蚀与防护, 2019, 40: 717
89 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
89 葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
90 Li W, Pots B F M, Brown B, et al. A direct measurement of wall shear stress in multiphase flow—is it an important parameter in CO2 corrosion of carbon steel pipelines? [J]. Corros. Sci., 2016, 110: 35
doi: 10.1016/j.corsci.2016.04.008
91 de Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
doi: 10.5006/0010-9312-31.5.177
92 StandardNorway. M-506 CO2corrosion rate calculation model [S]. Norway: NORSOK Standard, 2005
93 Halvorsen A M, Sontvedt T. CO2 corrosion model for carbon steel including wall shear stress model for multiphase flow and limits for production rate to avoid mesa attack [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
94 Anderko A M, Young R D. Simulation of CO2/H2S corrosion using thermodynamic and electrochemical models [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
95 Anderko A M. Simulation of FeCO3/FeS scale formation using thermodynamic and electrochemical models [A]. Proceedings of the Corrosion 2000 [C]. Orlando, 2000
96 Choi Y S, Hassani S, Vu T N, et al. Development of a prediction model for high pCO2 corrosion of mild steel [A]. Proceedings of the Corrosion 2019 [C]. Nashville, 2019
97 Nesic S, Cai J Y, Lee K L. A multiphase flow and internal corrosion prediction model for mild steel pipelines [A]. Proceedings of the Corrosion 2005 [C]. Houston, 2005
98 Shayegani M, Afshar A, Ghorbani M, et al. Mild steel carbon dioxide corrosion modelling in aqueous solutions [J]. Corros. Eng. Sci. Technol., 2008, 43: 290
doi: 10.1179/174327807X234679
99 Han J B, Carey J W, Zhang J S. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO2-saline environments [J]. Int. J. Greenh. Gas Control, 2011, 5: 777
doi: 10.1016/j.ijggc.2011.02.005
100 Barker R, Al Shaaili I, De Motte R A, et al. Iron carbonate formation kinetics onto corroding and pre-filmed carbon steel surfaces in carbon dioxide corrosion environments [J]. Appl. Surf. Sci., 2019, 469: 135
doi: 10.1016/j.apsusc.2018.10.238
101 De Motte R, Mingant R, Kittel J, et al. Near surface pH measurements in aqueous CO2 corrosion [J]. Electrochim. Acta, 2018, 290: 605
doi: 10.1016/j.electacta.2018.09.117
102 Zhu Y S, Huang Y S, Xu Y Z, et al. The study of pipeline localized corrosion using a novel designed electrical resistance sensor array [A]. Proceedings of the Corrosion & Prevention 2018 Conference [C]. Adelaide, 2018
103 Xiang Y, Wang Z, Xu M H, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2-H2O environments [J]. J. Supercrit. Fluids, 2013, 82: 1
doi: 10.1016/j.supflu.2013.05.016
104 Li Y Y, Zhu G Y, Hou B S, et al. A numerical model based on finite element method for predicting the corrosion of carbon steel under supercritical CO2 conditions [J]. Process Saf. Environ. Protect., 2021, 149: 866
doi: 10.1016/j.psep.2021.03.030
105 Duan Z H, Li D D. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250 ℃, 1 to 1000 bar with NaCl concentrations up to saturation of halite [J]. Geochim. Cosmochim. Acta, 2008, 72: 5128
doi: 10.1016/j.gca.2008.07.025
106 Li D D, Duan Z H. The speciation equilibrium coupling with phase equilibrium in the H2O-CO2-NaCl system from 0 to 250 ℃, from 0 to 1000 bar, and from 0 to 5 molality of NaCl [J]. Chem. Geol., 2007, 244: 730
doi: 10.1016/j.chemgeo.2007.07.023
107 Wang X G, Conway W, Burns R, et al. Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution [J]. J. Phys. Chem., 2010, 114A: 1734
108 Sun C, Liu S B, Li J K, et al. Insights into the interfacial process in electroless Ni-P coating on supercritical CO2 transport pipeline as relevant to carbon capture and storage [J]. ACS Appl. Mater. Interfaces, 2019, 11: 16243
doi: 10.1021/acsami.9b03623
109 Nešić S, Kahyarian A, Choi Y S. Implementation of a comprehensive mechanistic prediction model of mild steel corrosion in multiphase oil and gas pipelines [J]. Corrosion, 2019, 75: 274
doi: 10.5006/3093
[1] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[2] 王莎莎, 马帅杰, 车琨, 杜艳霞. 机器学习在自然环境腐蚀评估与预测领域的应用现状[J]. 中国腐蚀与防护学报, 2023, 43(3): 441-451.
[3] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[4] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[5] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[6] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[7] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[10] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[11] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[12] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[13] 韩夏冰 高志明 党丽华 王 迎 毕慧超. Q235钢在模拟大气环境中
早期腐蚀图像小波包分析
[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.
[14] 赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[15] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.