Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1293-1302     CSTR: 32134.14.1005.4537.2022.415      DOI: 10.11902/1005.4537.2022.415
  研究报告 本期目录 | 过刊浏览 |
超声喷丸对7075铝合金棒材组织结构与性能的影响
刘浩1, 郭晓开1, 王维2, 伍廉奎1, 曹发和1, 孙擎擎1()
1.中山大学材料学院 深圳 518107
2.松山湖材料实验室 东莞 523808
Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod
LIU Hao1, GUO Xiaokai1, WANG Wei2, WU Liankui1, CAO Fahe1, SUN Qingqing1()
1.School of Materials, Sun Yat-sen University, Shenzhen 518107, China
2.Songshan Lake Materials Laboratory, Dongguan 523808, China
引用本文:

刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
Hao LIU, Xiaokai GUO, Wei WANG, Liankui WU, Fahe CAO, Qingqing SUN. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1293-1302.

全文: PDF(9850 KB)   HTML
摘要: 

研究了超声喷丸对7075铝合金棒材微观组织结构、显微硬度、电化学腐蚀以及晶间腐蚀行为的影响。金相、XRD以及TEM等结果表明,采用超声喷丸制备了表层晶粒尺寸约为78.2 nm的梯度纳米结构7075铝合金,且合金表层时效析出强化相 (ηη′相) 回溶基体。显微硬度结果表明,超声喷丸处理后合金表层硬度提升了约20%。在0.1 mol/L Na2SO4+20 mmol/L NaCl溶液中的极化曲线结果表明,合金在超声喷丸处理后点蚀电位正移,说明合金耐点蚀萌生能力增强。在3.5%NaCl溶液中的极化曲线与电化学阻抗谱结果表明,7075铝合金棒材在超声喷丸处理后腐蚀速率加快,且腐蚀速率在深度方向上呈递减趋势。晶间腐蚀浸泡实验表明7075铝合金在超声喷丸处理后耐晶间腐蚀能力降低。最后,讨论了超声喷丸7075铝合金棒材的表层强化机制与腐蚀机理。

关键词 7075铝合金棒材表面纳米化显微硬度腐蚀行为    
Abstract

The effect of ultrasonic shot peening (USSP) on microstructure, microhardness, electrochemical corrosion and intergranular corrosion behavior of a 7075 Al-alloy rod were investigated by means of optical microscopy (OM), X-ray diffraction (XRD), transmission electron microscope (TEM) and corrosion tests.Results showed that after USSP treatment, gradient nanostructures were obtained in the topmost layer with grain size of ~78.2 nm; the precipitated strengthening phases (η and η′ phase) of surface region redissolved into Al matrix, and the hardness of surface layer increased by about 20%. Results of polarization test in 0.1 mol/L Na2SO4+20 mmol/L NaCl solution showed that pitting potential of the alloy shifted to the positive directipn position after USSP, implying a better resistance against pitting corrosion initiation. Electrochemical corrosion tests in 3.5%NaCl solution indicated that a higher corrosion rate of 7075 Al-alloy was obtained after USSP treatment. In addition, the corrosion rate showed a decreasing trend as a function of peened sample depth. Intergranular corrosion immersion tests showed that the resistance to intergranular corrosion of AA7075 decreased after USSP treatment. Combined with the microstructure characterization results, the surface strengthening mechanism and corrosion mechanism of ultrasonic shot peened 7075 Al-alloy were discussed.

Key words7075 Al-alloy rod    surface nanocrystallization    microhardness    corrosion behaviors
收稿日期: 2022-12-30      32134.14.1005.4537.2022.415
ZTFLH:  TG174  
基金资助:松山湖材料实验室开放课题基金(2021SLABFN13);国家自然科学基金(52101115)
通讯作者: 孙擎擎,E-mail: sunqq7@mail.sysu.edu.cn,研究方向为金属使役行为
Corresponding author: SUN Qingqing, E-mail: sunqq7@mail.sysu.edu.cn
作者简介: 刘浩,男,2000年生,硕士生
图 1  超声喷丸处理装置示意图
图2  不同冲击距离的超声喷丸7075铝合金截面金相图片
图3  7075铝合金棒材的平均晶粒尺寸
图4  7075铝合金棒材在超声喷丸处理前后的XRD
图5  超声喷丸处理后7075铝合金棒材表层约5 μm处的TEM结果
图6  超声喷丸处理后7075铝合金棒材的硬度-深度曲线
图7  未处理样和不同冲击距离7075铝合金喷丸样在0.1 mol/L Na2SO4+20 mmol/L NaCl溶液中的开路电位-时间曲线与极化曲线
SampleEcorr / VAg/AgClIcorr / 10-7 A·cm-2Epit / VAg/AgCl
Untreated-0.511.64-0.44
USSP_15 mm-0.636.55-0.42
USSP_40 mm-0.496.92-0.35
表1  未处理样和不同冲击距离7075铝合金喷丸样的极化曲线参数
图8  7075铝合金未处理样和喷丸样在3.5%NaCl溶液中的开路电位-时间曲线和极化曲线
SampleEcorr / VIcorr / 10-6 A·cm-2
USSP_0 μm-0.753.83
USSP_50 μm-0.712.36
USSP_100 μm-0.701.72
Untreated-0.680.97
表2  7075铝合金棒材未处理样和喷丸样在3.5%NaCl溶液中极化曲线的参数
图9  7075铝合金未处理样和喷丸样在3.5%NaCl溶液中的EIS结果
Sample

Rs

Ω·cm2

Y1

Ω-1·cm-2·S n

α1

Rpit

Ω·cm2

Rct

Ω·cm2

Ypit

Ω-1·cm-2·S n

αpit
USSP_0 μm2.213.43×10-80.9822.373.05×1031.97×10-40.75
USSP_50 μm17.361.29×10-60.9918.315.04×1031.84×10-50.89
USSP_100 μm18.341.94×10-60.9725.938.75×1031.23×10-50.93
Untreated27.011.11×10-70.9525.851.08×1041.27×10-50.92
表3  图9中EIS的拟合结果
图10  7075铝合金在晶间腐蚀测试后的截面光镜形貌
1 Yuan J, Pan S H, Zheng T Q, et al. Nanoparticle promoted solution treatment by reducing segregation in AA7034 [J]. Mater. Sci. Eng., 2021, 822A: 141691
2 Sun Q Q, Han Q Y, Wang S, et al. Microstructure, corrosion behaviour and thermal stability of AA 7150 after ultrasonic shot peening [J]. Surf. Coat. Technol., 2020, 398: 126127
doi: 10.1016/j.surfcoat.2020.126127
3 Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate [J]. Mater. Des., 2015, 85: 752
doi: 10.1016/j.matdes.2015.06.183
4 Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2010, 52: 4073
doi: 10.1016/j.corsci.2010.08.024
5 Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
6 Amini S, Masic A, Bertinetti L, et al. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages [J]. Nat. Commun., 2014, 5: 3187
doi: 10.1038/ncomms4187 pmid: 24476684
7 Weaver J C, Milliron G W, Miserez A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336: 1275
doi: 10.1126/science.1218764 pmid: 22679090
8 Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Prog. Mater Sci., 2017, 88: 467
doi: 10.1016/j.pmatsci.2017.04.013
9 Dobrzański L A, Lukaszkowicz K, Pakuła D, et al. Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques [J]. Arch. Mater. Sci. Eng., 2007, 28: 12
10 Sun D C, Ke L M, Xing L, et al. Self-propagating high-temperature synthesis of gradient transitional layer between ceramics and metal [J]. Trans. China Weld. Inst., 2000, 21(3): 44
10 孙德超, 柯黎明, 邢 丽 等. 陶瓷与多种梯度过渡层的自蔓延高温合成 [J]. 焊接学报, 2000, 21(3): 44
11 Pender D C, Padture N P, Giannakopoulos A E, et al. Gradients in elastic modulus for improved contact-damage resistance. Part I: The silicon nitride-oxynitride glass system [J]. Acta Mater., 2001, 49: 3255
doi: 10.1016/S1359-6454(01)00200-2
12 Colli A, Fasoli A, Ronning C, et al. Ion beam doping of silicon nanowires [J]. Nano Lett., 2008, 8: 2188
doi: 10.1021/nl080610d pmid: 18576693
13 Tong W P, Tao N R, Wang Z B, et al. Nitriding iron at lower temperatures [J]. Science, 2003, 299: 686
pmid: 12560546
14 Studart A R. Additive manufacturing of biologically-inspired materials [J]. Chem. Soc. Rev., 2016, 45: 359
doi: 10.1039/c5cs00836k pmid: 26750617
15 Ye Z Y, Liu D X, Li C Y, et al. Effect of shot peening and plasma electrolytic oxidation on the intergranular corrosion behavior of 7A85 aluminum alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 705
doi: 10.1007/s40195-014-0104-9
16 Bagheri S, Guagliano M. Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys [J]. Surf. Eng., 2009, 25: 3
doi: 10.1179/026708408X334087
17 Rakita M, Wang M, Han Q Y, et al. Ultrasonic shot peening [J]. Int. J. Comput. Mater. Sci. Surf. Eng., 2013, 5: 189
18 Huo W T, Hu J J, Cao H H, et al. Simultaneously enhanced mechanical strength and inter-granular corrosion resistance in high strength 7075 Al alloy [J]. J. Alloy. Compd., 2019, 781: 680
doi: 10.1016/j.jallcom.2018.12.024
19 Greiner C, Liu Z L, Schneider R, et al. The origin of surface microstructure evolution in sliding friction [J]. Scr. Mater., 2018, 153: 63
doi: 10.1016/j.scriptamat.2018.04.048
20 Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
doi: 10.11900/0412.1961.2014.00395
20 卢 柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1
21 Pandey V, Singh J K, Chattopadhyay K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy [J]. J. Alloy. Compd., 2017, 723: 826
doi: 10.1016/j.jallcom.2017.06.310
22 Sun Q Q, Han Q Y, Xu R, et al. Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy [J]. Corros. Sci., 2018, 130: 218
doi: 10.1016/j.corsci.2017.11.008
23 Bao L, Li K, Zheng J Y, et al. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes [J]. Surf. Coat. Technol., 2022, 440: 128481
doi: 10.1016/j.surfcoat.2022.128481
24 Sun Q Q, Zhou W H, Xie Y H, et al. Effect of trace chloride and temperature on electrochemical corrosion behavior of 7150-T76 Al alloy [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 121
24 孙擎擎, 周文辉, 谢跃煌 等. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 121
doi: 10.11902/1005.4537.2015.051
25 Sun Q Q, Chen Q Y, Chen K H. Link between pitting potentials and stress cracking corrosion susceptibility of 7150 Al Alloy with Different Ageing Processes [J]. Chin. J. Nonferrous Met., 2016, 26: 1400
25 孙擎擎, 陈启元, 陈康华. 不同热处理7150铝合金的点蚀电位与应力腐蚀敏感性 [J]. 中国有色金属学报, 2016, 26: 1400
26 Sun Q Q, Xu R, Han Q Y, et al. Long distance chemical gradient induced by surface nanocrystallization [J]. Appl. Mater. Today, 2019, 14: 137
doi: 10.1016/j.apmt.2018.12.002
27 Sun Q Q, Han Q Y, Liu X T, et al. The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy [J]. Surf. Coat. Technol., 2017, 328: 469
doi: 10.1016/j.surfcoat.2017.08.028
28 Lin B, Zhang J Y, Sun Q Q, et al. Microstructure, corrosion behavior and hydrogen evolution of USSP processed AZ31 magnesium alloy with a surface layer containing amorphous Fe-rich composite [J]. Int. J. Hydrogen Energy, 2021, 46: 10172
doi: 10.1016/j.ijhydene.2020.12.132
29 Perez M. Gibbs-Thomson effects in phase transformations [J]. Scr. Mater., 2005, 52: 709
doi: 10.1016/j.scriptamat.2004.12.026
30 Sun Q Q, Cao F H, Wang S. Nanoscale corrosion investigation of surface nanocrystallized 7150 Al alloy in 3.5 wt% NaCl solution by using FIB-TEM techniques [J]. Corros. Sci., 2022, 195: 110021
doi: 10.1016/j.corsci.2021.110021
31 Beura V K, Karanth Y, Darling K, et al. Role of gradient nano-grained surface layer on corrosion behavior of aluminum 7075 alloy [J]. npj Mater. Degrad., 2022, 6: 62
doi: 10.1038/s41529-022-00271-z
32 Chao D Y, Sun Y Z, Liu X T, et. al . Effect of Zn/Mg ratio and aging temperature on precipitation behavior of Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Rep., 2019, 33(suppl.2) : 398
32 晁代义, 孙有政, 刘晓滕 等. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响 [J]. 材料导报, 2019, 33(): 398
[1] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[2] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[4] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[5] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[6] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[7] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[8] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[9] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[10] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[11] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[12] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[13] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[14] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[15] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.