| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 飞机起落架用超高强钢应力腐蚀开裂研究进展 | 
  					 
  					  										
						李双1, 董立谨1( ), 郑淮北2, 吴铖川2, 王洪利2, 凌东1, 王勤英1 | 
					 
															
					1.西南石油大学新能源与材料学院 成都 610500 2.成都先进金属材料产业技术研究院股份有限公司 成都 610300 | 
					 
										
						 | 
					 
   										
    					| Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear | 
  					 
  					  					  					
						LI Shuang1, DONG Lijin1( ), ZHENG Huaibei2, WU Chengchuan2, WANG Hongli2, LING Dong1, WANG Qinying1 | 
					 
															
						1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China 2.Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu 610300, China | 
					   
									 
				
				引用本文: 
				
								李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.	
																												 																				Shuang LI,
																								Lijin DONG,
																								Huaibei ZHENG,
																								Chengchuan WU,
																								Hongli WANG,
																								Dong LING,
																												Qinying WANG. 
				Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1178-1188.	                                                        				  
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | 
																 
															     Wang X H, Luo H W. Research and application progress in ultra-high strength stainless steel for aircraft landing gear [J]. Mater. Eng., 2019, 47(9): 1
															     																 | 
																	  
																																
																| 1 | 
																 
															     王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展 [J]. 材料工程, 2019, 47(9): 1
															     																 | 
																	  
																																
																| 2 | 
																 
															     Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 37(6): 1
															     																 | 
																	  
																																
																| 2 | 
																 
															     赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1
															     																 | 
																	  
																																
																| 3 | 
																 
															     Zeng R C, Han E H. Corrosion and Protection of Materials [M]. Beijing: Chemical Industry Press, 2006
															     																 | 
																	  
																																
																| 3 | 
																 
															     曾荣昌, 韩恩厚. 材料的腐蚀与防护 [M]. 北京: 化学工业出版社, 2006
															     																 | 
																	  
																																
																| 4 | 
																 
															     Liao L H. Cracking analysis and protection of the axle of B757 landing gear [J]. Total Corros. Control, 2004, 18(5): 15
															     																 | 
																	  
																																
																| 4 | 
																 
															     廖灵洪. B757飞机起落架轮轴断裂原因分析与防护 [J]. 全面腐蚀控制, 2004, 18(5): 15
															     																 | 
																	  
																																
																| 5 | 
																 
															     Yang Z, Liu Z B, Liang J X, et al. Correlation between the microstructure and hydrogen embrittlement resistance in a precipitation-hardened martensitic stainless steel [J]. Corros. Sci., 2021, 182: 109260 
															     															     	 
															     																     		doi: 10.1016/j.corsci.2021.109260
															     																     																     																 | 
																	  
																																
																| 6 | 
																 
															     Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra high strength steel and research [J]. J. Harbin Univ. Sci. Technol., 2011, 16(6): 73
															     																 | 
																	  
																																
																| 6 | 
																 
															     张慧萍, 王崇勋, 杜 煦. 飞机起落架用300M超高强钢发展及研究现状 [J]. 哈尔滨理工大学学报, 2011, 16(6): 73
															     																 | 
																	  
																																
																| 7 | 
																 
															     Sun Y K, Zhang W. Development and research status of materials used for landing gear of civil aircraft [J]. Hot Work. Technol., 2018, 47(20): 22
															     																 | 
																	  
																																
																| 7 | 
																 
															     孙艳坤, 张 威. 民机起落架用材料的发展与研究现状 [J]. 热加工工艺, 2018, 47(20): 22
															     																 | 
																	  
																																
																| 8 | 
																 
															     Li A N, Li Y, Wang C X, et al. Influence of Mo on secondary hardening behavior of ultra-high strength AF1410 steel [J]. Iron Steel, 2007, 42(9): 60
															     																 | 
																	  
																																
																| 8 | 
																 
															     李阿妮, 厉 勇, 王春旭 等. Mo含量对AF1410钢二次硬化效果的影响 [J]. 钢铁, 2007, 42(9): 60
															     																 | 
																	  
																																
																| 9 | 
																 
															     Li Z, Zhao Z Y. Research and development of AerMet100 steel [J]. J. Aeronaut. Mater., 2006, 26(3): 265
															     																 | 
																	  
																																
																| 9 | 
																 
															     李 志, 赵振业. AerMet100钢的研究与发展 [J]. 航空材料学报, 2006, 26(3): 265
															     																 | 
																	  
																																
																| 10 | 
																 
															     Zhang H L, Zhang G Q, Zhou H C, et al. Influence of cooling rate during cryogenic treatment on the hierarchical microstructure and mechanical properties of M54 secondary hardening steel [J]. Mater. Sci. Eng., 2022, 851A: 143659
															     																 | 
																	  
																																
																| 11 | 
																 
															     Zhang Y P, Zhan D P, Qi X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength ferrium S53® steel [J]. Mater. Sci. Eng., 2018, 730A: 41
															     																 | 
																	  
																																
																| 12 | 
																 
															     Wang L, Fei J Y, Xin W L. Stress corrosion fracture and its precautions on landing gear of airplane [J]. Hot Working Technol., 2011, 40(4): 186
															     																 | 
																	  
																																
																| 12 | 
																 
															     王 磊, 费敬银, 辛文利. 飞机起落架应力腐蚀断裂及预防措施 [J]. 热加工工艺, 2011, 40(4): 186
															     																 | 
																	  
																																
																| 13 | 
																 
															     Tian S, Liu Z B, Fu R L, et al. Investigation of stress corrosion cracking behavior and mechanism analysis of a 1900 MPa-grade ultra-high-strength stainless steel [J]. J. Iron Steel Res. Int., 2022, 29: 1474 
															     															     	 
															     																     		doi: 10.1007/s42243-021-00710-2
															     																     																     																 | 
																	  
																																
																| 14 | 
																 
															     De Francisco U, Larrosa N O, Peel M J. Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449 [J]. Mater Sci. Eng., 2020, 772A: 138662
															     																 | 
																	  
																																
																| 15 | 
																 
															     Turnbull A. Modelling of environment assisted cracking [J]. Corros. Sci., 1993, 34: 921 
															     															     	 
															     																     		doi: 10.1016/0010-938X(93)90072-O
															     																     																     																 | 
																	  
																																
																| 16 | 
																 
															     Lynch S P. Mechanisms and kinetics of environmentally assisted cracking: current status, issues, and suggestions for further work [J]. Metall. Mater. Trans., 2013, 44A: 1209
															     																 | 
																	  
																																
																| 17 | 
																 
															     Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182 
															     															     	 
															     																     		doi: 10.1016/j.actamat.2012.06.040
															     																     																     																 | 
																	  
																																
																| 18 | 
																 
															     Pioszak G L, Gangloff R P. Hydrogen environment assisted cracking of modern ultra-high strength martensitic steels [J]. Metall. Mater. Trans., 2017, 48A: 4025
															     																 | 
																	  
																																
																| 19 | 
																 
															     Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639 
															     															     	 
															     																     		doi: 10.1016/0001-6160(88)90113-7
															     																     																     																 | 
																	  
																																
																| 20 | 
																 
															     Oriani R A, Josephic P H. Equilibrium aspects of hydrogen-induced cracking of steels [J]. Acta Metall., 1974, 22: 1065 
															     															     	 
															     																     		doi: 10.1016/0001-6160(74)90061-3
															     																     																     																 | 
																	  
																																
																| 21 | 
																 
															     Lee Y, Gangloff R P. Measurement and modeling of hydrogen environment-assisted cracking of ultra-high-strength steel [J]. Metall. Mater. Trans., 2007, 38A: 2174
															     																 | 
																	  
																																
																| 22 | 
																 
															     Pioszak G. Hydrogen assisted cracking of ultra-high strength steels [D]. Charlottesville: University of Virginia, 2015
															     																 | 
																	  
																																
																| 23 | 
																 
															     Gangloff R P. Probabilistic fracture mechanics simulation of stress corrosion cracking using accelerated laboratory testing and multi-scale modeling [J]. Corrosion, 2016, 72: 862 
															     															     	 
															     																     		doi: 10.5006/1920
															     																     																     																 | 
																	  
																																
																| 24 | 
																 
															     Rudomilova D, Prošek T, Luckeneder G. Techniques for investigation of hydrogen embrittlement of advanced high strength steels [J]. Corros. Rev., 2018, 36: 413 
															     															     	 
															     																     		doi: 10.1515/corrrev-2017-0106
															     																     																     																 | 
																	  
																																
																| 25 | 
																 
															     Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
															     																 | 
																	  
																																
																| 25 | 
																 
															     刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513 
															     															     	 
															     																     		doi: 10.11902/1005.4537.2021.130
															     																     																     																 | 
																	  
																																
																| 26 | 
																 
															     Henthorne M. The slow strain rate stress corrosion cracking test—A 50 year retrospective [J]. Corrosion, 2016, 72: 1488 
															     															     	 
															     																     		doi: 10.5006/2137
															     																     																     																 | 
																	  
																																
																| 27 | 
																 
															     Wu L F, Li S M, Liu J H, et al. SCC evaluation of ultra-high strength steel in acidic chloride solution [J]. J. Cent. South Univ., 2012, 19: 2726 
															     															     	 
															     																     		doi: 10.1007/s11771-012-1333-6
															     																     																     																 | 
																	  
																																
																| 28 | 
																 
															     Hu Y B, Dong C F, Luo H, et al. Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques [J]. Metall. Mater. Trans., 2017, 48A: 4046
															     																 | 
																	  
																																
																| 29 | 
																 
															     Figueroa D, Robinson M J. The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels [J]. Corros. Sci., 2008, 50: 1066 
															     															     	 
															     																     		doi: 10.1016/j.corsci.2007.11.023
															     																     																     																 | 
																	  
																																
																| 30 | 
																 
															     Dong X Q, Huang Y L. Research progress for stress corrosion cracking of stainless steel under marine environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 189
															     																 | 
																	  
																																
																| 30 | 
																 
															     董希青, 黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展 [J]. 中国腐蚀与防护学报, 2012, 32: 189 
															     																 | 
																	  
																																
																| 31 | 
																 
															     Khodabakhshi F, Kazeminezhad M. The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel [J]. Mater. Des., 2011, 32: 3280 
															     															     	 
															     																     		doi: 10.1016/j.matdes.2011.02.032
															     																     																     																 | 
																	  
																																
																| 32 | 
																 
															     Nibur K A, Somerday B P, Marchi C S, et al. The relationship between crack-tip strain and subcritical cracking thresholds for steels in high-pressure hydrogen gas [J]. Metall. Mater. Trans., 2013, 44A: 248
															     																 | 
																	  
																																
																| 33 | 
																 
															     Venezuela J, Liu Q L, Zhang M X, et al. A review of hydrogen embrittlement of martensitic advanced high-strength steels [J]. Corros. Rev., 2016, 34: 153 
															     															     	 
															     																     		doi: 10.1515/corrrev-2016-0006
															     																     																     																 | 
																	  
																																
																| 34 | 
																 
															     Burns J T, Harris Z D, Dolph J D, et al. Measurement and modeling of hydrogen environment-assisted cracking in a Ni-Cu-Al-Ti superalloy [J]. Metall. Mater. Trans., 2016, 47A: 990
															     																 | 
																	  
																																
																| 35 | 
																 
															     Wang X, Zhou W J, Hou D, et al. Effect of hydrogen on hydrogen permeation and stress corrosion behavior of low alloy steel in acid gas field [J]. Rare Met. Mater. Eng., 2020, 49: 3734
															     																 | 
																	  
																																
																| 35 | 
																 
															     王 霞, 周雯洁, 侯 铎 等. 氢对酸性气田低合金钢氢渗透及应力腐蚀行为的影响 [J]. 稀有金属材料与工程, 2020, 49: 3734
															     																 | 
																	  
																																
																| 36 | 
																 
															     Figueroa D, Robinson M J. Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels [J]. Corros. Sci., 2010, 52: 1593 
															     															     	 
															     																     		doi: 10.1016/j.corsci.2010.01.001
															     																     																     																 | 
																	  
																																
																| 37 | 
																 
															     Li D M, Gangloff R P, Scully J R. Hydrogen trap states in ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2004, 35A: 849
															     																 | 
																	  
																																
																| 38 | 
																 
															     Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2002, 33A: 1991
															     																 | 
																	  
																																
																| 39 | 
																 
															     Evers S, Senöz C, Rohwerder M. Hydrogen detection in metals: a review and introduction of a Kelvin probe approach [J]. Sci. Technol. Adv. Mater., 2013, 14: 014201
															     																 | 
																	  
																																
																| 40 | 
																 
															     Wen C J, Ho C, Boukamp B A, et al. Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: Application to ‘LiAl’ [J]. Int. Met. Rev., 1981, 26: 253 
															     															     	 
															     																     		doi: 10.1179/imr.1981.26.1.253
															     																     																     																 | 
																	  
																																
																| 41 | 
																 
															     Sundaram P A, Marble D K. Hydrogen diffusivity in Aermet® 100 at room temperature under galvanostatic charging conditions [J]. J. Alloy. Compd., 2003, 360: 90 
															     															     	 
															     																     		doi: 10.1016/S0925-8388(03)00332-3
															     																     																     																 | 
																	  
																																
																| 42 | 
																 
															     Zhang B L, Zhu Q S, Xu C, et al. Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels [J]. Nat. Commun., 2022, 13: 3858 
															     															     	 
															     																     		doi: 10.1038/s41467-022-31665-x
															     																     																     		pmid: 35790737
															     																     																 | 
																	  
																																
																| 43 | 
																 
															     Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176 
															     															     	 
															     																     		doi: 10.1016/j.corsci.2020.109176
															     																     																     																 | 
																	  
																																
																| 44 | 
																 
															     Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography [J]. Scr. Mater., 2012, 67: 213 
															     															     	 
															     																     		doi: 10.1016/j.scriptamat.2012.04.022
															     																     																     																 | 
																	  
																																
																| 45 | 
																 
															     Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
															     																 | 
																	  
																																
																| 45 | 
																 
															     焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
															     																 | 
																	  
																																
																| 46 | 
																 
															     Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603 
															     															     	 
															     																     		doi: 10.1016/j.ijhydene.2018.09.201
															     																     																     																 | 
																	  
																																
																| 47 | 
																 
															     Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel [J]. Mater. Charact., 2018, 144: 393 
															     															     	 
															     																     		doi: 10.1016/j.matchar.2018.07.038
															     																     																     																 | 
																	  
																																
																| 48 | 
																 
															     Ifergane S, David R B, Sabatani E, et al. Hydrogen diffusivity and trapping in custom 465 stainless steel [J]. J. Electrochem. Soc., 2018, 165: C107 
															     															     	 
															     																     		doi: 10.1149/2.0261803jes
															     																     																     																 | 
																	  
																																
																| 49 | 
																 
															     Turnbull A. The environmentally small/short crack growth effect: current understanding [J]. Corros. Rev., 2012, 30: 1 
															     															     	 
															     																     		doi: 10.1515/corrrev-2012-0003
															     																     																     																 | 
																	  
																																
																| 50 | 
																 
															     Ayer R, Machmeier P. On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel [J]. Metall. Mater. Trans., 1998, 29A: 903
															     																 | 
																	  
																																
																| 51 | 
																 
															     Mondière A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance [J]. Mater. Charact., 2018, 140: 103 
															     															     	 
															     																     		doi: 10.1016/j.matchar.2018.03.041
															     																     																     																 | 
																	  
																																
																| 52 | 
																 
															     Uluc A V, Tichelaar F D, Terryn H, et al. The role of heat treatment and alloying elements on hydrogen uptake in Aermet 100 ultrahigh-strength steel [J]. J. Electroanal. Chem., 2015, 739: 130 
															     															     	 
															     																     		doi: 10.1016/j.jelechem.2014.12.011
															     																     																     																 | 
																	  
																																
																| 53 | 
																 
															     Chen B F, Yan F Y, Yan M F, et al. Nitriding behavior and mechanical properties of AerMet100 steel and first-principles calculations of phase interfaces [J]. J. Mater. Res. Technol., 2022, 19: 46 
															     															     	 
															     																     		doi: 10.1016/j.jmrt.2022.05.017
															     																     																     																 | 
																	  
																																
																| 54 | 
																 
															     Wang L, Dong C F, Man C, et al. Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 754 
															     															     	 
															     																     		doi: 10.1007/s12613-020-2242-6
															     																     																     																 | 
																	  
																																
																| 55 | 
																 
															     Wei F G, Tsuzaki K. Hydrogen Trapping Phenomena in Martensitic Steels [M]. Tsukuba: Woodhead Publishing, 2012: 493
															     																 | 
																	  
																																
																| 56 | 
																 
															     Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Mater., 2012, 60: 6814 
															     															     	 
															     																     		doi: 10.1016/j.actamat.2012.09.004
															     																     																     																 | 
																	  
																																
																| 57 | 
																 
															     Momotani Y, Shibata A, Yonemura T, et al. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel [J]. Scr. Mater., 2020, 178: 318 
															     															     	 
															     																     		doi: 10.1016/j.scriptamat.2019.11.051
															     																     																     																 | 
																	  
																																
																| 58 | 
																 
															     Ma C, Cui Y F, Zhang Q, et al. Review of hydrogen embrittlement of medium manganese TRIP steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 885
															     																 | 
																	  
																																
																| 58 | 
																 
															     马 成, 崔彦发, 张 青 等. 中锰TRIP钢氢致开裂性能研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 885
															     																 | 
																	  
																																
																| 59 | 
																 
															     Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
															     																 | 
																	  
																																
																| 60 | 
																 
															     Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100 [J]. Metall. Mater. Trans., 1993, 24A: 1943
															     																 | 
																	  
																																
																| 61 | 
																 
															     Ji B H, Gao H J. Mechanical properties of nanostructure of biological materials [J]. J. Mech. Phys. Solids, 2004, 52: 1963 
															     															     	 
															     																     		doi: 10.1016/j.jmps.2004.03.006
															     																     																     																 | 
																	  
																																
																| 62 | 
																 
															     Padmanabhan R, Wood W E. Stress corrosion cracking behavior of 300M steel under different heat treated conditions [J]. Corrosion, 1985, 41: 688 
															     															     	 
															     																     		doi: 10.5006/1.3583005
															     																     																     																 | 
																	  
																																
																| 63 | 
																 
															     Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466
															     																 | 
																	  
																																
																| 64 | 
																 
															     Ran X Z, Liu D, Li J, et al. Effects of microstructures on the fatigue crack growth behavior of laser additive manufactured ultrahigh-strength AerMet100 steel [J]. Mater. Sci. Eng., 2018, 721A: 251
															     																 | 
																	  
																																
																| 65 | 
																 
															     Pound B G. Hydrogen trapping in high-strength steels [J]. Acta Mater., 1998, 46: 5733 
															     															     	 
															     																     		doi: 10.1016/S1359-6454(98)00247-X
															     																     																     																 | 
																	  
																																
																| 66 | 
																 
															     Jothi S, Croft T N, Brown S G R. Influence of grain boundary misorientation on hydrogen embrittlement in bi-crystal nickel [J]. Int. J. Hydrog. Energy, 2014, 39: 20671 
															     															     	 
															     																     		doi: 10.1016/j.ijhydene.2014.07.020
															     																     																     																 | 
																	  
																																
																| 67 | 
																 
															     Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J]. Acta Mater., 2009, 57: 4148 
															     															     	 
															     																     		doi: 10.1016/j.actamat.2009.05.012
															     																     																     																 | 
																	  
																																
																| 68 | 
																 
															     Seita M, Hanson J P, Gradečak S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement [J]. Nat. Commun., 2015, 6: 6164 
															     															     	 
															     																     		doi: 10.1038/ncomms7164
															     																     																     		pmid: 25652438
															     																     																 | 
																	  
																																
																| 69 | 
																 
															     Wang X, Dong H B, Yuan D Q, et al. Effect of aging process on strength and toughness of AerMet100 steel [J]. J. Chin. Mater. Res., 2016, 30: 819
															     																 | 
																	  
																																
																| 69 | 
																 
															     王 鑫, 董洪波, 袁大庆 等. 时效工艺对AerMet100钢强韧性能的影响 [J]. 材料研究学报, 2016, 30: 819
															     																 | 
																	  
																																
																| 70 | 
																 
															     Kasana S S, Sharma S, Pandey O P. Influence of heat treatment (routes) on the microstructure and mechanical properties of 300M ultra high strength steel [J]. Arch. Civ. Mech. Eng., 2022, 22: 126 
															     															     	 
															     																     		doi: 10.1007/s43452-022-00439-z
															     																     																     																 | 
																	  
																																
																| 71 | 
																 
															     Li S H, Min N, Li J W, et al. Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method [J]. Mater. Sci. Eng., 2013, 575A: 51
															     																 | 
																	  
																																
																| 72 | 
																 
															     Gao Y K. Influence of local surface strengthening on fatigue properties of components with holes of an A-100 steel [J] Trans. Mater. Heat Treat., 2014, 35(5): 160
															     																 | 
																	  
																																
																| 72 | 
																 
															     高玉魁. 表面强化对A-100钢带孔构件疲劳性能的影响 [J]. 材料热处理学报, 2014, 35(5): 160
															     																 | 
																	  
																																
																| 73 | 
																 
															     Turnbull A. Modeling of the chemistry and electrochemistry in CracksA review [J]. Corrosion, 2001, 57: 175 
															     															     	 
															     																     		doi: 10.5006/1.3290342
															     																     																     																 | 
																	  
																																
																| 74 | 
																 
															     Lynch S. Mechanistic and fractographic aspects of stress corrosion cracking [J]. Corros. Rev., 2012, 30: 63
															     																 | 
																	  
																																
																| 75 | 
																 
															     Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy [J]. Adv. Mater. Proc., 2008, 166: 37
															     																 | 
																	  
																																
																| 76 | 
																 
															     Arcari A, Moran J P, Horton D J, et al. The effect of alternate immersion on stress corrosion cracking behavior of steel and nickel alloys in natural seawater [A]. Corrosion 2021 [C]. Virtual, 2021: 16857
															     																 | 
																	  
																																
																| 77 | 
																 
															     Akiyama E, Wang M Q, Li S J, et al. Studies of evaluation of hydrogen embrittlement property of high-strength steels with consideration of the effect of atmospheric corrosion [J]. Metall. Mater. Trans., 2013, 44A: 1290
															     																 | 
																	  
																																
																| 78 | 
																 
															     Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
															     																 | 
																	  
																																
																| 78 | 
																 
															     徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
															     																 | 
																	  
																																
																| 79 | 
																 
															     Hillier E M K, Robinson M J. Hydrogen embrittlement of high strength steel electroplated with zinc-cobalt alloys [J]. Corros. Sci., 2004, 46: 715 
															     															     	 
															     																     		doi: 10.1016/S0010-938X(03)00180-X
															     																     																     																 | 
																	  
																																
																| 80 | 
																 
															     Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24 
															     															     	 
															     																     		doi: 10.2355/isijinternational.ISIJINT-2015-430
															     																     																     																 | 
																	  
																																
																| 81 | 
																 
															     Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 39: 504
															     																 | 
																	  
																																
																| 81 | 
																 
															     赵晋斌, 赵起越, 陈林恒 等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 39: 504
															     																 | 
																	  
																																
																| 82 | 
																 
															     Lourenco J M, Da Sun S, Sharp K, et al. Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel [J]. Int. J. Fatigue, 2016, 85: 18 
															     															     	 
															     																     		doi: 10.1016/j.ijfatigue.2015.11.021
															     																     																     																 | 
																	  
																																
																| 83 | 
																 
															     Da Sun S, Leary M, Liu Q C, et al. Evaluation of microstructure and fatigue properties in laser cladding repair of ultrahigh strength AerMet® 100 steel [J]. J. Laser Appl., 2015, 27(suppl.2) : S29202
															     																 | 
																	  
																																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |