Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1247-1254     CSTR: 32134.14.1005.4537.2022.354      DOI: 10.11902/1005.4537.2022.354
  综合评述 本期目录 | 过刊浏览 |
2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响
钟嘉欣1, 关蕾1(), 李雨2, 黄家勇2, 石磊3
1.广东工业大学 省部共建精密电子制造技术与装备国家重点实验室 广州市非传统制造技术及装备重点实验室 广州 510006
2.中船黄埔文冲船舶有限公司 广东省舰船先进焊接技术企业重点实验室 广州 510715
3.山东大学 材料液固结构演变与加工教育部重点实验室 济南 250061
Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy
ZHONG Jiaxin1, GUAN Lei1(), LI Yu2, HUANG Jiayong2, SHI Lei3
1.Guangzhou Key Laboratory of Nontraditional Machining and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2.CSSC Huangpu Wenchong Shipbuilding Company Limited, Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships, Guangzhou 510715, China
3.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
引用本文:

钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
Jiaxin ZHONG, Lei GUAN, Yu LI, Jiayong HUANG, Lei SHI. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1247-1254.

全文: PDF(4612 KB)   HTML
摘要: 

搅拌摩擦焊 (FSW) 作为一种固态连接工艺,有效解决了工程应用上2xxx系铝合金的焊接难题。然而由于搅拌摩擦焊过程中接头各个区域所经历的热力作用不同,FSW接头显微组织在各个区域发生演化,进而导致接头腐蚀行为和机理存在明显差异。本文总结了2xxx系铝合金搅拌摩擦焊接头的腐蚀类型、腐蚀发生区域及诱因,并概述了改善焊接接头耐蚀性的方法。

关键词 搅拌摩擦焊铝合金微观组织腐蚀行为    
Abstract

Friction stir welding, as a solid state bonding process, can effectively solve the welding problems of 2xxx series Al-alloy in engineering applications. However, during friction stir welding process, every local area of the welded joint has experienced distinctive thermal cycling and material plastic flow, therefore, different local areas may exhibit obviously differences in their microstructure evolution, as well as in corrosion behavior and corrosion mechanism. In this paper, the corrosion types, positions of corrosion initiation and relevant inducing factors for friction stir welded joints of 2xxx series Al-alloy were reviewed, meanwhile, the relevant corrosion mechanism of weld joints and corresponding methods of improving corrosion resistance for the welded joints were also summerized.

Key wordsfriction stir welding    Al-alloy    microstructure    corrosion behavior
收稿日期: 2022-11-16      32134.14.1005.4537.2022.354
ZTFLH:  TG 174  
基金资助:广东省自然科学基金(2021A1515010967);广州市科技计划项目(202102020723);广州市科技计划项目(202102020626);中国博士后科学基金(2020M682929)
通讯作者: 关蕾,E-mail: lguan@gdut.edu.cn,研究方向为金属材料的腐蚀与防护
Corresponding author: GUAN Lei, E-mail: lguan@gdut.edu.cn
作者简介: 钟嘉欣,女,1999年生,硕士生
图1  搅拌摩擦焊过程示意图[2]
ElementIntermetallic 1Intermetallic 2
Al59.9576.32
Cu19.4912.99
Mg20.40-
Fe-5.63
Mn-4.36
Si-0.19
表1  两类第二相的EDS分析结果[15] (atomic fraction / %)
图2  抛光后的2024铝合金SEM图像[12]
图3  FSW过程中生成的宏观结构,后退侧的TMAZ结构和HAZ结构及前进侧的TMAZ结构[28]
Al-alloyCorrosion typeCorrosion areaCorrosion inducing sourceReference
2024PittingNZUniformly distributed fine S phase[27]
2060-T8Intergranular corrosion

NZ&TMAZ

HAZ

The Cu rich phase at grain boundary[29, 30]
2024-T351PittingHAZ, located near to the TMAZThe coarse S phase in the grain[14, 31~33]
Intergranular corrosionThe continuous S phase at grain boundary
2098-T351, 2050-T3Exfoliation & intergranular corrosionHAZT1 phase at grain boundary、 sub-grain boundary[34, 35]
2014,2198-T851,2219Corrosion resistance is better than the base metalDissolution of Al2Cu/T1 phase[36~39]
表2  2xxx系铝合金搅拌摩擦焊接头腐蚀行为总结
MethorAl-alloyResultReference
Reduce heat input during weldingReduce the welding speed2024-T4The second-phase particles were dissolved and became smaller in size with segregation of the Cu elements at the grain boundary decreased[41]
Reduce the rotational speed2219-T87-[42]
Water cooling2219-T62, 2014θ(Al2Cu) phase was refined and the PFZ region was absent[39, 43]
Post welding heat treatmentartificial ageing of 8 and 9 h2014-T6-[44]
Surface treatmentSurface coating2024-T351, 2219-T87The grain had refined and the residual stress had reduced[45, 46]
Laser shock peening2024-T351The grain had refined, the phase had increased and the high density dislocation appeared[47]
ultrasonic impact treatment2A12[48]
2219-T6The grain had refined,the precipitated phase had dissolved[49]
laser surface melting2219The surface S phase had dissolved and the second phase was uniformly distributed[50]
in situ shot-peening-assisted cold spray coatingCoated porosity had reduced[51]
表3  提高2xxx系铝合金搅拌摩擦焊接头耐腐蚀性的方法总结
1 Majeed T, Mehta Y, Siddiquee A N. Precipitation-dependent corrosion analysis of heat treatable aluminum alloys via friction stir welding, a review [J]. Proc. Inst. Mech. Eng., 2021, 235C: 7600
2 Threadgill P L, Leonard A J, Shercliff H R, et al. Friction stir welding of aluminium alloys [J]. Int. Mater. Rev., 2009, 54: 49
doi: 10.1179/174328009X411136
3 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, 50R: 1
4 Benavides S, Li Y, Murr L E, et al. Low-temperature friction-stir welding of 2024 aluminum [J]. Scr. Mater., 1999, 41: 809
doi: 10.1016/S1359-6462(99)00226-2
5 Jonckheere C, de Meester B, Denquin A, et al. Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys [J]. J. Mater. Process. Technol., 2013, 213: 826
doi: 10.1016/j.jmatprotec.2013.01.001
6 Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg- (Li) based alloys [J]. Int. Mater. Rev., 2005, 50: 193
doi: 10.1179/174328005X14357
7 Fan G H, Geng L, Meng Q C, et al. The characterization and formation mechanism of nanosized insoluble intermetallic phase in 2024Al alloy [J]. Mater. Chem. Phys., 2010, 122: 200
doi: 10.1016/j.matchemphys.2010.02.034
8 Liang M C, Chen L, Zhao G Q, et al. Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet [J]. J. Alloy. Compd., 2020, 824: 153943
doi: 10.1016/j.jallcom.2020.153943
9 Hutchinson C R, Ringer S P. Precipitation processes in Al-Cu-Mg alloys microalloyed with Si [J]. Metall. Mater. Trans., 2000, 31A: 2721
10 Li J Y, Chen S Y, Li F S, et al. Synergy effect of Si addition and pre-straining on microstructure and properties of Al-Cu-Mg alloys with a medium Cu/Mg ratio [J]. Mater. Sci. Eng., 2019, 767A: 138429
11 Li J C, Birbilis N, Buchheit R G. Electrochemical assessment of interfacial characteristics of intermetallic phases present in aluminium alloy 2024-T3 [J]. Corros. Sci., 2015, 101: 155
doi: 10.1016/j.corsci.2015.09.012
12 Kang J, Fu R D, Luan G H, et al. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminium alloy [J]. Corros. Sci., 2010, 52: 620
doi: 10.1016/j.corsci.2009.10.027
13 Wang X J, Ma X F, Zhang J Y, et al. Corrosion behavior of the friction stir weld of 2024 aluminum alloy in salt solution [J]. Corros. Prot., 2018, 39: 45
13 王希靖, 马晓飞, 张金银 等. 盐水环境中搅拌摩擦焊接2024铝合金的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 45
14 Bousquet E, Poulon-Quintin A, Puiggali M, et al. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint [J]. Corros. Sci., 2011, 53: 3026
doi: 10.1016/j.corsci.2011.05.049
15 Queiroz F M, Magnani M, Costa I, et al. Investigation of the corrosion behaviour of AA 2024-T3 in low concentrated chloride media [J]. Corros. Sci., 2008, 50: 2646
doi: 10.1016/j.corsci.2008.06.041
16 Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024‐T3 [J]. J. Electrochem. Soc., 1997, 144: 2621
doi: 10.1149/1.1837874
17 Zhang Y J, Liu H Y, Wang H B. Performance study on intergranular corrosion and exfoliation corrosion of friction stir welded joints of aluminium alloy [J]. Eng. Test, 2018, 58(3): 35
17 张亚娟, 刘海燕, 王红斌. 铝合金搅拌摩擦焊接头晶间腐蚀和剥落腐蚀性能研究 [J]. 工程与试验, 2018, 58(3): 35
18 Mu C. Intergranular corrosion of Al-Cu-Mg high-strength aluminum alloy [J]. Alum. Fabr., 2017, (6): 22
18 牟 春. Al-Cu-Mg系高强铝合金的晶间腐蚀 [J]. 铝加工, 2017, (6): 22
19 Grilli R, Baker M A, Castle J E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution [J]. Corros. Sci., 2010, 52: 2855
doi: 10.1016/j.corsci.2010.04.035
20 Blanc C, Lavelle B, Mankowski G. The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy [J]. Corros. Sci., 1997, 39: 495
doi: 10.1016/S0010-938X(97)86099-4
21 Li J F, Zheng Z Q, Ren W D. Function mechanism of secondary phase on localized corrosion of Al alloy [J]. Master. Rev., 2005, 19 (2): 81
21 李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制 [J]. 材料导报, 2005, 19(2): 81
22 Zhu D Q, van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl) propyl]tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3 [J]. Corros. Sci., 2003, 45: 2163
doi: 10.1016/S0010-938X(03)00060-X
23 Kang J, Dong C L, Luan G H, et al. Corrosion mechanism on top surface of friction stir welded joint of 2024 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 282
23 康 举, 董春林, 栾国红 等. 2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索 [J]. 中国腐蚀与防护学报, 2011, 31: 282
24 Wang X J, Ma X F, Zhang L L. Effect of tool pin profile on microstructure and mechanical properties of 2024 aluminum alloy joint by friction stir welding [J]. Trans. China Weld. Inst., 2017, 38 (12): 99
24 王希靖, 马晓飞, 张亮亮. 搅拌头形状对2024铝合金接头组织及性能的影响 [J]. 焊接学报, 2017, 38(12): 99
25 Hu Z L, Wang X S, Yuan S J. Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy [J]. Mater. Charact., 2012, 73: 114
doi: 10.1016/j.matchar.2012.08.007
26 Kang J, Fu R D, Luan G H. Quantitative investigation on aging phase behavior for 2024-T351 aluminum alloy during friction stir welding process [J]. Phys. Test. Chem. Anal., 2011, 47A: 199
26 康 举, 付瑞东, 栾国红. 定量研究2024-T351铝合金搅拌摩擦焊过程中的时效相行为 [J]. 理化检验-物理分册, 2011, 47: 199
27 Li N, Xu Y X, Li W Y, et al. Corrosion susceptibility and mechanical properties of friction-stir-welded AA2024-T3 joints [J]. Weld. World, 2022, 66: 951
doi: 10.1007/s40194-022-01282-9
28 do Vale N L, Torres E A, de Abreu Santos T F, et al. Effect of the energy input on the microstructure and mechanical behavior of AA2024-T351 joint produced by friction stir welding [J]. J. Braz. Soc. Mech. Sci. Eng., 2018, 40: 467
doi: 10.1007/s40430-018-1372-5
29 Bocchi S, Cabrini M, D’Urso G, et al. The influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints [J]. J. Manuf. Processes, 2018, 35: 1
doi: 10.1016/j.jmapro.2018.07.012
30 Entringer J, Meisnar M, Reimann M, et al. The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded Al-Cu-Li alloy [J]. Mater. Lett., 2019, 2: 100014
31 Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci., 2007, 49: 877
doi: 10.1016/j.corsci.2006.05.038
32 Jariyaboon M, Davenport A J, Ambat R, et al. The effect of cryogenic CO2 cooling on corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Eng., Sci. Technol., 2009, 44: 425
33 Sato Y S, Kokawa H, Kurihara S. Systematic examination of precipitation phenomena associated with hardness and corrosion properties in friction stir welded aluminium alloy 2024 [J]. Weld. World, 2011, 55: 39
34 Proton V, Alexis J, Andrieu E, et al. Influence of post-welding heat treatment on the corrosion behavior of a 2050-T3 aluminum-copper-lithium alloy friction stir welding joint [J]. J. Electrochem. Soc., 2011, 158: C139
doi: 10.1149/1.3562206
35 da Silva R M P, Izquierdo J, Milagre M X, et al. On the local corrosion behavior of coupled welded zones of the 2098-T351 Al-Cu-Li alloy produced by Friction Stir Welding (FSW): An amperometric and potentiometric microelectrochemical investigation [J]. Electrochimica Acta., 2021, 373: 137910
doi: 10.1016/j.electacta.2021.137910
36 Sinhmar S, Dwivedi D K. Investigation of mechanical and corrosion behavior of friction stir weld joint of aluminium alloy [J]. Mater. Today: Proc., 2019, 18: 4542
37 Donatus U, de Viveiros B V G, de Alencar M C, et al. Correlation between corrosion resistance, anodic hydrogen evolution and microhardness in friction stir weldment of AA2198 alloy [J]. Mater. Charact., 2018, 144: 99
doi: 10.1016/j.matchar.2018.07.004
38 Surekha K, Murty B S, Rao K P. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy [J]. Solid State Sci., 2009, 11: 907
doi: 10.1016/j.solidstatesciences.2008.11.007
39 Xu W F, Ma J, Wang M, et al. Effect of cooling conditions on corrosion resistance of friction stir welded 2219-T62 aluminum alloy thick plate joint [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1491
doi: 10.1016/S1003-6326(20)65313-4
40 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
41 Wang W, Li T Q, Wang K S, et al. Effect of travel speed on the stress corrosion behavior of friction stir welded 2024-T4 aluminum alloy [J]. J. Mater. Eng. Perform., 2016, 25: 1820
doi: 10.1007/s11665-016-1979-6
42 Naik D B, Rao C H V, Rao K S, et al. Optimization of friction stir welding parameters to improve corrosion resistance and hardness of AA2219 aluminum alloy welds [J]. Mater. Today: Proc., 2019, 15: 76
43 Sinhmar S, Dwivedi D K. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling [J]. Mater. Sci. Eng., 2017, 684A: 413
44 Kannusamy A S, Ramasamy R. Effect of post weld heat treatment and welding parameters on mechanical and corrosion characteristics of friction stir welded aluminium alloy AA2014-T6 [J]. Trans. Can. Soc. Mech. Eng., 2019, 43: 230
doi: 10.1139/tcsme-2018-0185
45 Zhao C Y, Zhang H, Shao T G, et al. Microstructure and corrosion behaviour of Al coating deposited by cold spraying onto FSW AA2219-T87 joint [J]. Corros. Eng., Sci. Technol., 2019, 54: 86
46 Li W Y, Jiang R R, Huang C J, et al. Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint [J]. Mater. Des., 2015, 65: 757
doi: 10.1016/j.matdes.2014.10.007
47 Iordachescu M, Valiente A, Caballero L, et al. Laser Shock Processing influence on local properties and overall tensile behavior of friction stir welded joints [J]. Surf. Coat. Technol., 2012, 206: 2422
doi: 10.1016/j.surfcoat.2011.10.044
48 Deng Y F, Zhang T M, Gan X W, et al. Effects of ultrasonic impact on microstructure and properties of friction stir welded aluminum alloy [J]. J. Netshape Form. Eng., 2019, 11 (5) : 78
48 邓云发, 张体明, 干贤威 等. 超声冲击对铝合金搅拌摩擦焊接头组织及性能的影响 [J]. 精密成形工程, 2019, 11 (5) : 78
49 Qian S H, Zhang T M, Chen Y H, et al. Effect of ultrasonic impact treatment on microstructure and corrosion behavior of friction stir welding joints of 2219 aluminum alloy [J]. J. Mater. Res. Technol., 2022, 18: 1631
doi: 10.1016/j.jmrt.2022.03.068
50 Ma S C, Zhao Y, Zou J S, et al. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219 [J]. Opt. Laser Technol., 2017, 96: 299
doi: 10.1016/j.optlastec.2017.05.028
51 Zhang H, Zhao C Y, Guo Q L, et al. Microstructure and corrosion behavior of friction stir welded al alloy coated by in situ shot-peening-assisted cold spray [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 172
doi: 10.1007/s40195-019-00966-4
52 Wang W, Li T, Wang K, et al. Effect of travel speed on the stress corrosion behavior of friction stir welded 2024-T4 aluminum alloy [J]. J. Mater. Eng. Perform., 2016, 25(5): 1820
doi: 10.1007/s11665-016-1979-6
53 Sutton M A, Reynolds A P, Yang B C, et al. Mode I fracture and microstructure for 2024-T3 friction stir welds [J]. Mater. Sci. Eng., 2003, 354A: 6
54 Kumar P V, Reddy G M, Rao K S. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone-Effect of post weld heat treatment and addition of boron carbide [J]. Def. Technol., 2015, 11: 166
55 Liu W H, Liu W B, Bao A L. Improvement of corrosion resistance of friction stir welded joint of 7N01-T5 aluminum alloy by micro-arc oxidation [J]. Trans. China Weld. Inst., 2013, 34(1): 29
55 刘万辉, 刘文彬, 鲍爱莲. 微弧氧化处理改善7N01-T5铝合金搅拌摩擦焊接头的耐蚀性能 [J]. 焊接学报, 2013, 34(1): 29
56 Ou Y C, Chen M A. Corrosion resistance of the weld joint by friction stir welding on 6061 aluminum alloy after micro-arc oxidation [J]. Electropl. Finish., 2015, 34: 719
56 欧艳春, 陈明安. 6061铝合金搅拌摩擦焊焊缝微弧氧化涂层的耐蚀性 [J]. 电镀与涂饰, 2015, 34: 719
57 Rao K P, Ram G D J, Stucker B E. Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings [J]. Scr. Mater., 2008, 58: 998
doi: 10.1016/j.scriptamat.2008.01.033
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[5] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[6] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[7] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[8] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[9] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[10] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] 彭文山, 段体岗, 马力, 辛永磊, 程文华, 刘少通. ZAlSi7Mg铝合金在深海环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 516-524.
[12] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[13] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[14] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[15] 段体岗, 李祯, 彭文山, 张彭辉, 丁康康, 郭为民, 侯健, 马力, 许立坤. 深海环境5A06铝合金腐蚀行为与表面特性[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.