Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1255-1263     CSTR: 32134.14.1005.4537.2022.300      DOI: 10.11902/1005.4537.2022.300
  综合评述 本期目录 | 过刊浏览 |
耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展
田光元1, 严程铭1, 杨智皓1, 王俊升1,2()
1.北京理工大学材料学院 北京 100081
2.北京理工大学前沿交叉学院 北京 100081
Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys
TIAN Guangyuan1, YAN Chengming1, YANG Zhihao1, WANG Junsheng1,2()
1.School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
2.Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
引用本文:

田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
Guangyuan TIAN, Chengming YAN, Zhihao YANG, Junsheng WANG. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1255-1263.

全文: PDF(6607 KB)   HTML
摘要: 

高比强度和高比刚度Mg-Li合金,由于其出色的减重效果,是理想的航空航天金属结构工程材料。然而,由于其耐腐蚀性能较差,严重制约了其在一些服役环境中的广泛应用。因此,耐腐蚀Mg-Li合金的成分、工艺研制是未来发展的重要方向。本文综述了其腐蚀机理及不同类型表面防护 方法 (金属涂层、阳极氧化、导电性-屏蔽性聚合物涂层和智能涂层)、研究现状与未来应用。同时,分析了不同类型腐蚀防护方法的优势与局限性问题,讨论了耐腐蚀Mg-Li合金腐蚀与防护的未来研究趋势,以期为耐腐蚀Mg-Li合金开发提供新思路。

关键词 Mg-Li合金腐蚀防护智能涂层超疏水    
Abstract

Mg-Li alloys with high specific strength and stiffness are ideal metal structural engineering materials for aerospace due to their excellent weight reduction effect. However, their poor corrosion resistance severely limits the wide application in some service environments. Therefore, in order to meet the demand of application, it is still necessary to adjust and optimize the composition of corrosion resistant Mg-Li alloys and improve its preparation process in the future. The research status on corrosion mechanism and different types of surface protection methods (metallic coating, anodic oxidation, conductive-shielded polymer coating, and smart coating), as well as future applications of corrosion-resistant Mg-Li alloys were summarized in this paper. Meanwhile, the advantages and limitation of different types of corrosion protection methods were analyzed, and the future research directions of corrosion and protection for corrosion resistant Mg-Li alloys are discussed so that to provide new ideas for future development of higher corrosion-resistant Mg-Li alloys.

Key wordsMg-Li alloy    corrosion    protection    smart coating    superhydrophobic
收稿日期: 2022-09-28      32134.14.1005.4537.2022.300
ZTFLH:  TG146.22  
基金资助:国家自然科学基金(52073030);国家自然科学基金广西区域创新联合基金(U20A20276)
通讯作者: 王俊升,E-mail: junsheng.wang@bit.edu.cn,研究方向为航空航天轻质铝合金、镁合金的设计与开发,铝合金、镁合金表面腐蚀与防护
Corresponding author: WANG Junsheng, E-mail: junsheng.wang@bit.edu.cn
作者简介: 田光元,男,1993年生,博士生
ConditionEcorr / Vvs SCEIcorrA·cm-2CR mm·a-1RpkΩ·cm2
H-2.221.02 ×10-327.200.122
AR-2.004.50 ×10-412.300.266
RA-2.183.54 ×10-50.941.864
表1  LC41合金在SBF中电化学极化实验的结果总结
图1  Mg-8Li合金在NaCl溶液中的腐蚀机理[11]
图2  HCP、HCP+BCC和BCC Mg-Li合金表面腐蚀层的形成示意图[13]
图3  含Ce-MCM-22的划痕环氧涂层在0.35%NaCl溶液中浸泡不同时间的SEM和Ce映射分析图像。(注:扫描前浸入120 h后,划痕样品的涂层从Mg-Li合金剥离)[42]
1 Feng S, Liu W C, Zhao J, et al. Effect of extrusion ratio on microstructure and mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy with duplex structure [J]. Mater. Sci. Eng., 2017, 692A: 9
2 Peng X, Liu W C, Wu G H. Effects of Li content on microstructure and mechanical properties of as-cast Mg-xLi-3Al-2Zn-0.5Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 838
doi: 10.1016/S1003-6326(22)65837-0
3 Ouyang Y B, Kang H J, Guo E Y, et al. Thermo-driven oleogel-based self-healing slippery surface behaving superior corrosion inhibition to Mg-Li alloy [J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.07.006
4 Zhang C, Wu L, Zhao Z L, et al. Effect of the Al-Si eutectic on the microstructure and corrosion behavior of the single-phase Mg alloy Mg-4Li [J]. J. Magnes. Alloy., 2021, 9: 1339
doi: 10.1016/j.jma.2019.08.004
5 Ouyang Y B, Chen Z N, Guo E Y, et al. Bioinspired superhydrophobic surface via one-step electrodeposition and its corrosion inhibition for Mg-Li alloy [J]. Colloids Surf., 2022, 648A: 129145
6 Wang B J, Luan J Y, Xu D K, et al. Research progress on the corrosion behavior of magnesium-lithium-based alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 32: 1
doi: 10.1007/s40195-018-0847-9
7 Sun Y H, Wang R C, Peng C Q, et al. Corrosion behavior and surface treatment of superlight Mg-Li alloys [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1455
doi: 10.1016/S1003-6326(17)60167-5
8 Ye J Y, Feng Y, He Y Q, et al. Effect of extrusion on microstructure, mechanical properties and corrosion behavior of Mg-5Li-5 Al-0.6Y alloy [J]. Heat Treat. Met., 2021, 46(8): 85
8 叶佳钰, 冯 艳, 贺玉卿 等. 挤压对Mg-5Li-5Al-0.6Y合金组织、力学性能和腐蚀行为的影响 [J]. 金属热处理, 2021, 46(8): 85
doi: 10.13251/j.issn.0254-6051.2021.08.017
9 Yang H B, Wu L, Jiang B, et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62: 128
doi: 10.1016/j.jmst.2020.05.067
10 Nene S S, Kashyap B P, Prabhu N, et al. Biocorrosion and biodegradation behavior of ultralight Mg-4Li-1Ca (LC41) alloy in simulated body fluid for degradable implant applications [J]. J. Mater. Sci., 2015, 50: 3041
doi: 10.1007/s10853-015-8846-y
11 Song Y W, Shan D Y, Chen R S, et al. Corrosion characterization of Mg-8Li alloy in NaCl solution [J]. Corros. Sci., 2009, 51: 1087
doi: 10.1016/j.corsci.2009.03.011
12 Song Y W, Shan D Y, Chen R S, et al. Investigation of surface oxide film on magnesium lithium alloy [J]. J. Alloy. Compd., 2009, 484: 585
doi: 10.1016/j.jallcom.2009.04.137
13 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
14 Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
14 郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
15 Sharma A K, Rani R U, Malek A, et al. Black anodizing of a magnesium-lithium alloy [J]. Met. Finish., 1996, 94: 16
16 Ono S, Suzuki Y, Asoh H, et al. Microstructure of anodic films grown on magnesium-lithium-yttrium ultra light alloy [J]. Mater. Sci. Forum, 2003, 426-432: 581
doi: 10.4028/www.scientific.net/MSF.426-432
17 Yang X W, Wang G X, Dong G J, et al. Effects of phytic acid on anodic film for Mg-Li alloy [J]. Electroplat. Pollut. Control, 2010, 30(2): 33
17 杨潇薇, 王桂香, 董国君 等. 植酸对镁锂合金阳极氧化膜的影响 [J]. 电镀与环保, 2010, 30(2): 33
18 Peng X, Wu G H, Liu W C, et al. Corrosion mechanism and surface protection of Mg-Li alloy [J]. Chin. J. Nonferrous Met., 2022, 32: 1
doi: 10.1016/S1003-6326(21)65776-X
18 彭 翔, 吴国华, 刘文才 等. Mg-Li合金的腐蚀机理与表面防护 [J]. 中国有色金属学报, 2022, 32: 1
19 Shi Z M, Song G L, Atrens A. Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy [J]. Corros. Sci., 2006, 48: 1939
doi: 10.1016/j.corsci.2005.08.004
20 Cui X J, Ping J. Research progress of microarc oxidation for corrosion prevention of Mg alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 87
20 崔学军, 平 静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 87
doi: 10.11902/1005.4537.2018.036
21 Wu G Q, Zhao D C, Lin X, et al. Investigation of an environmentally friendly coloring coating for magnesium-lithium alloy micro-arc oxidation [J]. Surf. Interfaces, 2020, 20: 100513
22 Zhang J M, Wang K, Duan X, et al. Effect of hydrothermal treatment time on microstructure and corrosion behavior of micro-arc oxidation/layered double hydroxide composite coatings on LA103Z Mg-Li alloy in 3.5% NaCl solution [J]. J. Mater. Eng. Perform., 2020, 29: 4032
doi: 10.1007/s11665-020-04906-7
23 Li Z J, Wang X X, Dong X L, et al. Creating high-performance bi-functional composite coatings on magnesium-8lithium alloy through electrochemical surface engineering with highly enhanced corrosion and wear protection [J]. J. Alloy. Compd., 2020, 818: 153341
doi: 10.1016/j.jallcom.2019.153341
24 Ji P, Long R Y, Hou L G, et al. Study on hydrophobicity and wettability transition of Ni-Cu-SiC coating on Mg-Li alloy [J]. Surf. Coat. Technol., 2018, 350: 428
doi: 10.1016/j.surfcoat.2018.07.038
25 Yin T T, Wu R Z, Leng Z, et al. The process of electroplating with Cu on the surface of Mg-Li alloy [J]. Surf. Coat. Technol., 2013, 225: 119
doi: 10.1016/j.surfcoat.2013.03.024
26 Tian W P, Guo L S, Wang Y H, et al. Effect of Cu-/Ag-activation on growth and corrosion resistance of electroless plated Ni-film on plasma electrolytic oxidation coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 573
26 田卫平, 郭良帅, 王宇航 等. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 573
doi: 10.11902/1005.4537.2021.151
27 Zou Y, Zhang Z W, Liu S Y, et al. Ultrasonic-assisted electroless Ni-P plating on dual phase Mg-Li alloy [J]. J. Electrochem. Soc., 2014, 162: C64
doi: 10.1149/2.0841501jes
28 Li D Y, Cui X F, Wen X, et al. Effect of CeO2 nanoparticles modified graphene oxide on electroless Ni-P coating for Mg-Li alloys [J]. Appl. Surf. Sci., 2022, 593: 153381
doi: 10.1016/j.apsusc.2022.153381
29 Sun Y J, Yang R, Xie L, et al. Interfacial bonding mechanism and properties of HVOF-sprayed Fe-based amorphous coatings on LA141 magnesium alloy substrate [J]. Surf. Coat. Technol., 2021, 426: 127801
doi: 10.1016/j.surfcoat.2021.127801
30 Jiang L P, Cui X F, Jin G, et al. Synthesis and microstructure, properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding [J]. Appl. Surf. Sci., 2022, 575: 151645
doi: 10.1016/j.apsusc.2021.151645
31 Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
31 李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
32 Maurya R, Siddiqui A R, Katiyar P K, et al. Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1767
doi: 10.1016/j.jmst.2019.03.028
33 Chen X J, Shen K J. Anti-corrosion properties of polyaniline containing coatings on Mg-Li alloy [J]. Corros. Sci. Prot. Technol., 2009, 21: 384
33 陈兴娟, 沈科金. 镁锂合金表面含聚苯胺复合涂层的防腐性能研究 [J]. 腐蚀科学与防护技术, 2009, 21: 384
34 Li Y F, Li J Y, Gao X H, et al. Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy [J]. Appl. Surf. Sci., 2018, 462: 362
doi: 10.1016/j.apsusc.2018.08.118
35 Chen S B, Yin C Q, Wang Y, et al. Developing polydopamine modified molybdenum disulfide/epoxy resin powder coatings with enhanced anticorrosion performance and wear resistance on magnesium lithium alloys [J]. J. Magnes. Alloy., 2022, 10, 2534
doi: 10.1016/j.jma.2021.08.007
36 Gnedenkov S V, Sinebryukhov S L, Mashtalyar D V, et al. Composite fluoropolymer coatings on the MA8 magnesium alloy surface [J]. Corros. Sci., 2016, 111: 175
doi: 10.1016/j.corsci.2016.04.052
37 Yu C, Cui L Y, Zhou Y F, et al. Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy [J]. Surf. Coat. Tech., 2018, 344: 1
doi: 10.1016/j.surfcoat.2018.03.007
38 Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion Inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
38 杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
39 Nazeer A A, Madkour M. Potential use of smart coatings for corrosion protection of metals and alloys: a review [J]. J. Mol. Liquids, 2018, 253: 11
doi: 10.1016/j.molliq.2018.01.027
40 Tian G Y, Zhao J, Li S H, et al. Preparation and performance analysis of different types of corrosion protective coatings on carbon metal surfaces [J]. Mater. Prot., 2019, 52(8): 149
40 田光元, 赵 晶, 李生虎 等. 碳钢表面不同耐蚀涂层的制备与性能浅析 [J]. 材料保护, 2019, 52(8): 149
41 Ulaeto S B, Rajan R, Pancrecious J K, et al. Developments in smart anticorrosive coatings with multifunctional characteristics [J]. Prog. Org. Coat., 2017, 111: 294
42 Wang Y L, Zhu Y H, Li C, et al. Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy [J]. Appl. Surf. Sci., 2016, 369: 384
doi: 10.1016/j.apsusc.2016.02.102
43 Cui L Y, Wei G B, Han Z Z, et al. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy [J]. J. Mater. Sci. Technol., 2019, 35: 254
doi: 10.1016/j.jmst.2018.09.052
44 Li Y F, Gao W B, Shi L Z, et al. Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy [J]. China Surf. Eng., 2020, 33(5): 1
44 李玉峰, 高文博, 史凌志 等. 超疏水涂层的制备及其对Mg-Li合金的防腐蚀性能 [J]. 中国表面工程, 2020, 33(5): 1
[1] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[3] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[4] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[5] 张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[6] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[7] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[8] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[9] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[10] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[11] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[12] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[13] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[14] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[15] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.