Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1407-1412     CSTR: 32134.14.1005.4537.2022.362      DOI: 10.11902/1005.4537.2022.362
  研究报告 本期目录 | 过刊浏览 |
CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为
曲卫卫1,2, 陈泽浩3, 裴延玲4, 李树索2(), 王福会3
1.中国航发沈阳发动机研究所 沈阳 110015
2.北京航空航天大学 航空发动机研究院 北京 100191
3.沈阳材料科学国家研究中心 东北大学联合研究部 沈阳 110819
4.北京航空航天大学 前沿科学技术研究院 100191
Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating
QU Weiwei1,2, CHEN Zehao3, PEI Yanling4, LI Shusuo2(), WANG Fuhui3
1.AECC Shenyang Engine Research Institute, Shenyang 110015, China
2.Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
3.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
4.Research Institute for Frontier Science, Beihang University, Beijing 100191, China
引用本文:

曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
Weiwei QU, Zehao CHEN, Yanling PEI, Shusuo LI, Fuhui WANG. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1407-1412.

全文: PDF(4178 KB)   HTML
摘要: 

选取了5种热障涂层用陶瓷材料 (Y2O3、La2Ce2O7、Gd2Zr2O7、Al2O3、12YSHf),对其进行了CMAS熔体铺展和腐蚀行为的分析,并与常用的陶瓷材料7YSZ进行了对比。研究表明,12YSHf和Al2O3在减缓CMAS熔体铺展方面具有较好的效果;Al2O3和La2Ce2O7高温下与CMAS反应后界面层厚度较小,具有较好的抗CMAS腐蚀性能。综上,Al2O3在延缓CMAS熔体铺展和抗CMAS腐蚀方面的综合效果最为突出。

关键词 CMAS熔体热障涂层用材料熔体铺展高温腐蚀    
Abstract

The coating failure of blades caused by low melting point silicate composed of CaO,MgO,Al2O3,SiO2 has been widely concerned for an aero-engine in service. Therefore, the spreading and corrosivity of CMAS melt on five ceramic materials, i.e. Y2O3,La2Ce2O7,Gd2Zr2O7,Al2O3 and 12YSHf, as candidate materials for thermal barrier coatings, was assessed in air at 1250 oC for 16 h, in comparison with 7YSZ, the commonly used ceramic material. It can be found that 12YSHf and Al2O3 show good effect in slowing down the spreading of CMAS melt. In addition, the high temperature reaction interfaces of CMAS/Al2O3 and CMAS/La2Ce2O7 are all thinner than the others, which means that Al2O3 and La2Ce2O7 have better resistance to CMAS. Overall, the effect of Al2O3 in retarding the spreading and corrosion of CMAS is the most outstanding.

Key wordsCMAS melt    materials for thermal barrier coating    spreading behavior    hot corrosion behavior
收稿日期: 2022-11-22      32134.14.1005.4537.2022.362
ZTFLH:  TG174  
基金资助:辽宁省自然科学基金(2022-MS-104);中国博士后科学基金(ZX20230009)
通讯作者: 李树索,E-mail: lishs@buaa.edu.cn,研究方向为高温合金,热障涂层
Corresponding author: LI Shusuo, E-mail: lishs@buaa.edu.cn
作者简介: 曲卫卫,女,1992年生,博士,工程师
CeramicCrystal structureSintering processRelative density
Y2O3Fluorite1600 ℃/10 h93%
7YSZFluorite1400 ℃/6 h90%
12YSHfFluorite1580 ℃/5 h96%
La2Ce2O7Fluorite1500 ℃/4 h98%
Gd2Zr2O7Pyrochlore1600 ℃/10 h98%
Al2O3Hexagonal close-packed99 Al2O399%
表 1  陶瓷样品基本信息
图1  CMAS共混粉末的DSC曲线及升温过程中CMAS圆柱体在几种陶瓷基片表面的收缩率
图2  CMAS熔体在不同陶瓷材料表面接触角余弦值随温度的变化曲线
图3  陶瓷片经CMAS在1250 ℃处理16 h后的XRD谱
图 4  不同陶瓷样品1250 ℃处理16 h后反应层剖面形貌
图5  不同陶瓷样品距反应层不同距离处Ca、Mg、Al、Si的原子百分数分布图
1 Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
1 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
doi: 10.7527/S1000-6893.2014.0161
2 Peters M, Leyens C, Schulz U, et al. EB-PVD thermal barrier coatings for aeroengines and gas turbines [J]. Adv. Eng. Mater., 2001, 3: 193
doi: 10.1002/(ISSN)1527-2648
3 Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerosp. Sci. Technol., 2003, 7: 73
doi: 10.1016/S1270-9638(02)00003-2
4 An L, Gao C Q, Jia J G, et al. Review on metal silicide anti-oxidation coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 298
4 安 亮, 高昌琦, 贾建刚 等. 金属硅化物抗氧化涂层的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 298
5 Song Y. Volcanic ash avoidance [J]. Ciuil Aviat. Econom. Technol., 1997, (8): 49
5 宋 勇. 如何避开火山灰 [J]. 民航经济与技术, 1997, (8): 49
6 Smialek J L, Archer F A, Garlick R G. The chemistry of Saudi Arabian sand-a deposition problem on helicopter turbine airfoils [A]. Proceedings of the International SAMPE Technical Conference, 24th and International SAMPE Metals and Metals Processing Conference [C]. Toronto, 1992
7 Qu W W, Chen Z H, Li S S, et al. Failure mechanism of YSZ coatings prepared by EB-PVD under partial penetration of CMAS attacking [J]. Corros. Sci., 2022, 203: 110339
doi: 10.1016/j.corsci.2022.110339
8 Song W J, Yang S J, Fukumoto M, et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines [J]. Acta Mater., 2019, 171: 119
doi: 10.1016/j.actamat.2019.04.011
9 Zhao C H, Yang L W, Xiao X R, et al. Improving molten CMAS resistance of thermal barrier coatings by modified laser remelting method [J]. J. Aeronaut. Mater., 2022, 42(1): 40
9 赵长浩, 杨玲伟, 肖学仁 等. 激光重熔改性热障涂层抗CMAS腐蚀特性 [J]. 航空材料学报, 2022, 42(1): 40
10 Guo L, Guo H B, Peng H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9-Yb0.1)2Zr2O7/YSZ thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2014, 34: 1255
doi: 10.1016/j.jeurceramsoc.2013.11.035
11 Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
doi: 10.1007/s11666-009-9356-8
12 Stott F H, de Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
13 Chen X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings [J]. Surf. Coat. Technol., 2006, 200: 3418
doi: 10.1016/j.surfcoat.2004.12.029
14 Yang S J, Yan X D, Guo H B. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43: 527613
14 杨姗洁, 严旭东, 郭洪波. CMAS环境下热障涂层的损伤机理及防护策略 [J]. 航空学报, 2022, 43: 527613
15 Chen Z, Zhang Z Q, Wei W T, et al. Failure analysis of thermal barrier coatings on turbine blade in CMAS environment [J]. Aeroengine, 2022, 48(2): 121
15 陈 泽, 张志强, 韦文涛 等. 涡轮叶片热障涂层在CMAS环境下的失效分析 [J]. 航空发动机, 2022, 48(2): 121
16 Guo L, Gao Y, Ye F X, et al. CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine [J]. Acta Metall. Sin., 2021, 57: 1184
doi: 10.11900/0412.1961.2021.00121
16 郭 磊, 高 远, 叶福兴 等. 航空发动机热障涂层的CMAS腐蚀行为与防护方法 [J]. 金属学报, 2021, 57: 1184
17 Zhang B P, Song W J, Wei L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits [J]. Scr. Mater., 2019, 163: 71
doi: 10.1016/j.scriptamat.2018.12.028
18 Guo L, Yan Z, Wang X H, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J]. Ceram. Int., 2019, 45: 7627
doi: 10.1016/j.ceramint.2019.01.059
19 Zhang B P, Song W J, Guo H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor [J]. J. Eur. Ceram. Soc., 2018, 38: 3564
doi: 10.1016/j.jeurceramsoc.2018.04.013
20 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2-(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
20 姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
doi: 10.11902/1005.4537.2020.023
21 Hu Y Y, Qian W, Hua Y Q, et al. Effect of pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on its hot corrosion behavior at 1250 ℃ beneath deposites of CaO-MgO-Al2O3-SiO2 [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 687
21 胡蕴媛, 钱 伟, 花银群 等. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 687
doi: 10.11902/1005.4537.2021.208
22 Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
doi: 10.1111/jace.2006.89.issue-10
23 Qu W W, Li S S, Jing J, et al. The spreading behavior of CMAS melt on YSZ single crystal with low index orientation [J]. Appl. Surf. Sci., 2020, 527: 146846
doi: 10.1016/j.apsusc.2020.146846
24 Xie J, Zhang Q, Mao S, et al. Anisotropic crystal plane nature and wettability of fluorapatite [J]. Appl. Surf. Sci., 2019, 493: 294
doi: 10.1016/j.apsusc.2019.06.195
25 Stapper G, Bernasconi M, Nicoloso N, et al. Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia [J]. Phys. Rev. B, 1999, 59: 294
doi: 10.1103/PhysRevB.59.294
[1] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[2] 柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[3] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[4] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[5] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[6] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[7] 梁书源, 姜翠玉. 电厂燃油锅炉腐蚀机理及防腐添加剂研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[8] 马双忱, 焦坤灵, 张立男, 孙尧, 吴文龙, 张小霓. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612.
[9] 张明明,辛丽,丁学勇,耿树江,朱圣龙,王福会. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[10] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[11] 黄本生, 尹文锋, 王小红, 施宜君. 常减压装置常用钢材在高温原油馏分中的腐蚀研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[12] 潘太军,陈德贵,张轲,胡静. NF616和12CrMoV在模拟垃圾气化环境中的高温腐蚀[J]. 中国腐蚀与防护学报, 2011, 31(6): 457-461.
[13] 董泽华,何金杯,郭兴蓬,张耀享,汉继成. 环烷酸与有机硫对Cr5Mo钢高温腐蚀的交互作用研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 219-224.
[14] 任鑫; 杨怀玉; 王福会; 赵柱; 邵亚薇 . A3钢在钒化物中700℃下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 92-94 .
[15] 张扬伟; 王富岗; 李德俊; 王大庸 . 化学热处理表面改性310SS高温腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(1): 37-40 .