Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 892-898    DOI: 10.11902/1005.4537.2020.162
  研究报告 本期目录 | 过刊浏览 |
亚临界/超临界水条件下镍基合金 (Incoloy800,825,625)的硫化腐蚀特性研究
张洁(), 曲积钰, 卢金玲, 刘倩, 罗兴锜
西安理工大学 西北旱区生态水利国家重点实验室 西安 710048
Sulfidation Corrosion Behavior of Nickel-based Alloys (Incoloy800, 825 and 625) in Sub/supercritical Water
ZHANG Jie(), QU Jiyu, LU Jinling, LIU Qian, LUO Xingqi
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(7111 KB)   HTML
摘要: 

采用间歇式超临界反应釜进行了亚临界/超临界水体系中硫化物作用下,3种镍基合金 (Incoloy800、825和625) 的硫化腐蚀特性研究,通过分析腐蚀后合金表面形貌、腐蚀层结构及其物相组成,揭示该体系下镍基合金的硫化腐蚀机制,探究不同合金间的腐蚀行为差异,揭示腐蚀温度及合金组成元素的作用规律。结果表明,Ni/Cr含量比越低,合金在含硫超临界水中的耐腐蚀性能越好。对于Ni/Cr比为1.5的Incoloy800合金,其Ni、Cr主要用于形成致密的尖晶石相NiCrO4膜而可有效地保护基体;对于Ni/Cr分别为2和3的Incoloy825,Incoloy625和Incoloy825合金在超临界条件下腐蚀膜厚约4.26 μm,而Inconel625合金表面形成的是外层金属硫化物、内层金属氧化物的双层膜结构,过剩的Ni生成了疏松多孔的NiS相,导致二者合金较严重的硫化腐蚀。

关键词 超临界水亚临界水镍基合金腐蚀    
Abstract

The corrosion characteristics of nickel-based alloys (Incoloy800, 825 and 625) in sub/supercritical water systems with the presence of sulfides were investigated using supercritical batch reactor. The surface morphology, structure and phase composition of corrosion products were characterized. The difference in corrosion behavior for the three alloys were assessed in terms of the effect of temperature and elemental composition of alloys. It is found that the nickel-based alloy with lower Ni/Cr ratio had better corrosion resistance. For Incoloy800 alloy with Ni/Cr ratio of 1.5, the Ni and Cr mainly converted into dense spinel phase NiCrO4 which could protect the substrate from corrosion. With regarding to Incoloy825 and 625 alloys, whose Ni/Cr ratios respectively were 2 and 3, the corrosion scale of Incoloy825 alloy in supercritical water was 4.26 μm in thickness, while duplex scales with outer portion of metal sulfide and inner portion of metal oxides were formed for Inconel625 alloy. However, surplus Ni generated loose NiS phase, giving rise to significant corrosion for these two alloys.

Key wordssupercritical water    subcritical water    nickel based alloy    corrosion
收稿日期: 2020-09-14     
ZTFLH:  TG174  
基金资助:国家自然科学基金(22078260)
通讯作者: 张洁     E-mail: jiezhang@xaut.edu.cn
Corresponding author: ZHANG Jie     E-mail: jiezhang@xaut.edu.cn
作者简介: 张洁,女,1988年生,博士生,讲师

引用本文:

张洁, 曲积钰, 卢金玲, 刘倩, 罗兴锜. 亚临界/超临界水条件下镍基合金 (Incoloy800,825,625)的硫化腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898.
Jie ZHANG, Jiyu QU, Jinling LU, Qian LIU, Xingqi LUO. Sulfidation Corrosion Behavior of Nickel-based Alloys (Incoloy800, 825 and 625) in Sub/supercritical Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 892-898.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.162      或      https://www.jcscp.org/CN/Y2021/V41/I6/892

SampleCSiMnPSCrFeAlMoNbNi
Incoloy800≤0.1≤1.0≤1.5≤0.03≤0.0221.043.450.4------Bal.
Incoloy825≤0.03≤0.5≤1.0------21.527.57≤0.23.0---Bal.
Inconel6250.030.10.30.0070.00221.84.00.28.73.4Bal.
表1  3种镍基合金的元素组成
图1  间歇式超临界水反应装置示意图
图2  3种镍基合金在25 MPa,350 ℃、S浓度为5000 mg/L的亚临界水环境中暴露80 h后的表面形貌
SampleFeNiCrS
Incoloy800 alloy043.4532.521.00
117.3126.4813.6314.23
236.3019.7120.461.27
Incoloy800 alloy027.5742.021.50
16.8213.9812.3544.27
215.223.353.6328.67
Incoloy800 alloy04.0061.1621.800
10.6827.4610.4110.67
20.0611.098.6429.75
表2  腐蚀前后3种镍基合金表面产物的EDS分析
图3  3种镍基合金在25 MPa,520 ℃、S浓度为5000 mg/L的超临界水环境中暴露80 h后的表面形貌
图4  3种镍基合金在25 MPa,520 ℃、S浓度为5000 mg/L的超临界水中暴露80 h后的截面背散射电子图及其主要元素线分布
图5  亚临界水条件下镍基合金材料试样腐蚀表面的XRD谱
图6  超临界水 (25 MPa、520 ℃) 条件下镍基合金材料试样表面腐蚀层的XRD谱
1 Ge Z W, Guo L J, Jin H. Catalytic supercritical water gasification mechanism of coal [J]. Int. J. Hydrog. Energy, 2020, 45: 9504
2 Ge Z W, Guo S H, Ren C Y F, et al. Non-catalytic supercritical water partial oxidation mechanism of coal [J]. Int. J. Hydrog. Energy, 2020, 45: 21178
3 Guo X L, Chen K, Gao W H, et al. A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water [J]. Corros. Sci., 2017, 127: 157
4 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Characterization of oxide layer and micro-crack initiation in alloy 316L stainless steel after 20,000h exposure to supercritical water at 500 °C [J]. Mater. Charact., 2017, 131: 532
5 Yang J Q, Wang S Z, Li Y H, et al. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment [J]. Corros. Sci., 2020, 167: 108493
6 Shen C, Du D H, Sun Y, et al. Corrosion behavior of nickel based alloy 825 in supercritical water [J]. Atom. Energy Sci. Technol., 2014, 48: 1660
6 沈朝, 杜东海, 孙耀等. 镍基合金825在超临界水中的腐蚀性能研究 [J]. 原子能科学技术, 2014, 48: 1660
7 Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water [J]. Appl. Surf. Sci., 2017, 404: 443
8 Chang K S, Huang J H, Yan C B, et al. Corrosion behavior of Alloy 625 in supercritical water environments [J]. Prog. Nucl. Energy, 2012, 57: 20
9 Chang K H, Chen S M, Yeh T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 ℃ [J]. Corros. Sci., 2014, 81: 21
10 Meng N, Jiang D D, Liu Y, et al. Sulfur transformation in coal during supercritical water gasification [J]. Fuel, 2016, 186: 394
11 Liu S K, Li L H, Guo L J, et al. Sulfur transformation characteristics and mechanisms during hydrogen production by coal gasification in supercritical water [J]. Energy Fuels, 2017, 31: 12046
12 Reddy S N, Nanda S, Kozinski J A. Superc ritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery [J]. Chem. Eng. Res. Des., 2016, 113: 17
13 Li Y H, Wang S Z, Yang J Q, et al. Corrosion characteristics of a nickel-base alloy C-276 in harsh environments [J]. Int. J. Hydrog. Energy, 2017, 42: 19829
14 Fulger M, Ohai D, Mihalache M, et al. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions [J]. J. Nucl. Mater., 2009, 385: 288
15 Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 °C [J]. Corros. Sci., 2016, 106: 188
16 Choudhry K I, Guzonas D A, Kallikragas D T, et al. On-line monitoring of oxide formation and dissolution on alloy 800H in supercritical water [J]. Corros. Sci., 2016, 111: 574
17 Dieckmann R, Mason T O, Hodge J D, et al. Defects and cation diffusion in magnetite (III.) tracerdiffusion of foreign tracer cations as a function of temperature and oxygen potential [J]. Bericht. Bunsengesell. Physikal. Chem., 1978, 82: 778
18 LaBranche M, Garratt-Reed A, Yurek G. Early stages of the oxidation of chromium in H2-H2O-H2S  gas mixtures [J]. J. Electrochem. Soc., 1983, 130: 2405
19 Lee J C, Kim M J, Lee D B. High-temperature corrosion of aluminized and chromized Fe-25.8%Cr-19.5%Ni alloys in N2/H2S/H2O-mixed gases [J]. Oxid. Met., 2014, 81: 617
20 Yang J Q, Wang S Z, Li Y H, et al. Oxidation-sulfidation attacks on alloy 600 in supercritical water containing organic sulfides [J]. Mater. Lett., 2020, 263: 127218
[1] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[3] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[4] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[5] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[6] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[7] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[8] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[9] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[10] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[11] 宋亓宁, 武竹雨, 李慧琳, 佟瑶, 许楠, 包晔峰. 激光重熔对高锰铝青铜在3.5%NaCl溶液中空蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 877-882.
[12] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[13] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[14] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[15] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.