Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 686-690    DOI: 10.11902/1005.4537.2020.190
  研究报告 本期目录 | 过刊浏览 |
Er对海工5052铝合金腐蚀行为的影响
张欣1(), 林木烟1,2, 杨光恒1, 王泽华1, 邵佳1, 周泽华1
1.河海大学力学与材料学院 南京 211100
2.浙江大学材料科学与工程学院 杭州 315100
Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy
ZHANG Xin1(), LIN Muyan1,2, YANG Guangheng1, WANG Zehua1, SHAO Jia1, ZHOU Zehua1
1.College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2.School of Materials Science and Engineering, Zejiang University, Hangzhou 315100, China
全文: PDF(9091 KB)   HTML
摘要: 

通过浸泡实验和电化学实验测试了稀土元素Er对海洋工程常用5052铝合金腐蚀行为的影响,通过光学显微镜 (OM)、扫描电子显微镜 (SEM)、能谱分析仪 (EDS) 观察腐蚀前后合金微观组织形貌与分析腐蚀产物成分。结果表明:随着5052铝合金中稀土Er加入量的增加,合金耐蚀性先升高后降低,Er加入量为0.4%时合金耐蚀性最好。适量Er的加入能够提高5052铝合金的耐蚀性,但过量Er的加入会导致合金耐蚀性大幅度降低。

关键词 5052铝合金稀土Er腐蚀行为点蚀    
Abstract

The effect of Er addition on the corrosion behavior of 5052 Al-alloy were investigated by means of electrochemical measurement and immersion test. as well as optical microscope (OM), scanning electron microscope (SEM) and energy disperse spectroscopy (EDS). The results indicated that with the increase of Er addition, the corrosion resistance of 5052 Al-alloy increased first, and then decreased. Among others, the 5052 Al-alloy with 0.4% Er addition had the best corrosion resistance. It is obvious that, a proper amount of Er addition could improve the corrosion resistance of 5052 Al-alloy effectively, whereas the excessive Er addition would increase the corrosion rate and reduce the corrosion resistance.

Key words5052 Al-alloy    rare metal Er    corrosion behavior    pitting corrosion
收稿日期: 2020-10-12     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51909071);江苏省自然科学基金;中央高校基本科研业务费专项(B200202133)
通讯作者: 张欣     E-mail: zhangxin.007@163.com
Corresponding author: ZHANG Xin     E-mail: zhangxin.007@163.com
作者简介: 张欣,男,1988年生,博士,讲师

引用本文:

张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
Xin ZHANG, Muyan LIN, Guangheng YANG, Zehua WANG, Jia SHAO, Zehua ZHOU. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 686-690.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.190      或      https://www.jcscp.org/CN/Y2021/V41/I5/686

No.ErMgCrZnMnFeAl
A102.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A20.05~0.202.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A30.25~0.402.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A40.45~0.602.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A50.65~0.802.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
A60.85~1.002.2~2.80.15~0.35≤0.1≤0.1<0.4Bal.
表1  5052铝合金的设计化学成分
图1  不同Er加入量的5052铝合金未腐蚀的SEM形貌
PointAlMgFeEr
183.75---16.25---
282.36---17.64---
384.71------15.29
479.51------20.49
553.11------46.89
表2  不同Er含量5052铝合金EDS分析结果
图2  不同Er加入量的5052铝合金浸泡720 h的腐蚀形貌
图3  不同Er加入量的5052铝合金浸泡后SEM形貌
PointAlMgFeEr
179.90---20.10---
284.42------15.58
表3  不同Er加入量的5052铝合金点蚀坑区域EDS分析
图4  不同Er加入量的5052铝合金极化曲线
No.Ecorr / VIcorr / μA·cm-2Epit / V
A1-1.447±0.1750.85±5.78-0.7421±0.12
A2-1.356±0.1436.89±4.21-0.7349±0.09
A3-1.324±0.1113.64±2.41-0.7101±0.12
A4-1.380±0.0817.68±2.89-0.7342±0.08
A5-1.390±0.1232.86±3.52-0.7367±0.06
A6-1.448±0.2153.96±6.28-0.7422±0.13
表4  不同Er加入量的5052铝合金的Ecorr,Icorr,Epit值
图5  不同Er加入量的5052铝合金Nyquist图
No.Rsol / Ω·cm2Qp / Ω-1·cm-2·s-1n1Rt / Ω·cm2Qdl (pit) / Ω-1·cm-2·s-1n2Rt (pit) / Ω·cm2
A17.3419.931×10-60.90291.705×10410.96×10-60.89402.330×104
A28.9159.162×10-60.90621.883×1048.36×10-60.95582.464×104
A311.0113.36×10-60.91902.528×1045.634×10-60.88055.408×104
A49.27810.22×10-60.89232.134×1049.64×10-60.99622.162×104
A59.0919.347×10-60.87981.218×10410.37×10-60.83182.236×104
A68.2937.278×10-60.86841.105×10412.07×10-60.86971.456×104
表5  不同Er加入量的5052铝合金阻抗谱等效电路拟合参数
1 Wu Z G, Song M, He Y H. Effects of Er on the microstructure and mechanical properties of an as-extruded Al-Mg alloy [J]. Mater. Sci. Eng., 2009, 504A: 183
2 Hou J, Zhang P H, Guo W M. Study on corrosion of aluminum alloys for ship applications in marine environment [J]. Equip. Environ. Eng., 2015, 12(2): 59
2 侯健, 张彭辉, 郭为民. 船用铝合金在海洋环境中的腐蚀研究 [J]. 装备环境工程, 2015, 12(2): 59
3 Chen J G, Su B, Luo X, et al. Microstructure and corrosion characteristics of aluminum alloy high voltage isolation switch parts applied in offshore environment with SO2 [J]. Corros. Prot., 2017, 38: 252
3 陈剑光, 苏贲, 罗雪等. 近海含SO2环境中高压隔离开关铝合金部件的组织及腐蚀特 [J]. 腐蚀与防护, 2017, 38: 252
4 Yang D N, Dong K H, Fu C F, et al. Corrosion failure analysis on Al-alloy parts of knife switches in Hainan power grid [J]. Corros. Sci. Prot. Technol., 2016, 28: 82
4 杨大宁, 董凯辉, 符传福等. 海南电网刀闸铝合金部件腐蚀失效分析 [J]. 腐蚀科学与防护技术, 2016, 28: 82
5 Wang Y, Gupta R K, Sukiman N L, et al. Influence of alloyed Nd content on the corrosion of an Al-5Mg alloy [J]. Corros. Sci., 2013, 73: 181
6 Ahmad Z, Ul-Hamid A, Abdul-Aleem B J. The corrosion behavior of scandium alloyed Al 5052 in neutral sodium chloride solution [J]. Corros. Sci., 2001, 43: 1227
7 Rosalbino F, Angelini E, De Negri S, et al. Influence of the rare earth content on the electrochemical behaviour of Al-Mg-Er alloys [J]. Intermetallics, 2003, 11: 435
8 Bethencourt M, Botana F J, Calvino J J, et al. Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review [J]. Corros. Sci., 1998, 40: 1803
9 Rosalbino F, Delsante S, Borzone G, et al. Influence of rare earth metals on the characteristics of anodic oxide films on aluminium and their dissolution behaviour in NaOH solution [J]. Corros. Sci., 2010, 52: 322
10 Zhang Y H, Yin Z M, Zhang J, et al. Recrystallization of Al-Mg-Sc-Zr alloys [J]. Rare Met. Mater. Eng., 2002, 31: 167
11 Mishra A K, Balasubramaniam R. Corrosion inhibition of aluminium by rare earth chlorides [J]. Mater. Chem. Phys., 2007, 103: 385
12 Zhou S A. Microstructural control and strengthening mechanism research on novel rare earth Sc modified Al-Mg alloys [D]. Hefei: HefeiUniversity of Technology, 2016
12 周士昂. 基于稀土元素Sc改性Al-Mg新型铝合金的组织控制与强化机理研究 [D]. 合肥: 合肥工业大学, 2016
13 Ji X L. Study on the microstructure and properties of Al-4.5Mg-0.7Mn-0.1Zr-Er [D]. Beijing: Beijing University of Technology, 2006
13 季小兰. Al-4.5Mg-0.7Mn-0.1Zr-Er合金微观组织与性能的研究 [D]. 北京: 北京工业大学, 2006
14 Yu X M. Effect of Er, Zr and Sr on microstructure and properties of 5052 alloy [D]. Chongqing: Southwest University, 2016
14 佘欣未. Er、Zr、Sr等微量元素对5052合金组织和性能的影响[D]. 重庆: 西南大学, 2016
15 Томашов Н Д, translated by Yu B N, et al. Theory of Metal Corrosion [M]. Beijing: Science Press, 1957
15 托马晓夫 H Д著, 余柏年译. 金属腐蚀理论 [M]. 北京: 科学出版社, 1957
[1] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[2] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[3] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[4] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[5] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[6] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[7] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[8] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[9] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[10] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[11] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[12] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[13] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[14] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[15] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.