Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 883-891    DOI: 10.11902/1005.4537.2020.184
  研究报告 本期目录 | 过刊浏览 |
5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究
刘泉兵, 刘宗德(), 郭胜洋, 肖毅
华北电力大学能源动力与机械工程学院 电站能量传递转化与系统教育部重点实验室 北京 102206
Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions
LIU Quanbing, LIU Zongde(), GUO Shengyang, XIAO Yi
Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
全文: PDF(10965 KB)   HTML
摘要: 

采用浸泡实验、腐蚀形貌观察、腐蚀产物分析及电化学测试研究了5083铝合金和30CrMnSiA钢电偶对在不同Cl-浓度下的电偶腐蚀行为,并分析了电偶对在0.6 mol/L NaCl溶液中的电偶腐蚀机制。随着NaCl浓度从0.05 mol/L增加到0.85 mol/L,Cl-的活性减弱,溶解氧含量降低,阴极反应速率降低;电偶对在0.85 mol/L NaCl溶液中的电偶电流密度最小。动电位极化曲线和阻抗谱测试结果表明,电偶腐蚀过程中,铝合金的耐蚀性先降低再增大,表面生成的腐蚀产物抑制了铝合金的溶解;30CrMnSiA钢的腐蚀速率前期较小,后随着腐蚀时间延长而增大;腐蚀15 d后,钢的腐蚀产物参与阴极反应,加快电荷传递速率,导致5083铝合金和30CrMnSiA结构钢的腐蚀速率增大。

关键词 5083铝合金30CrMnSiA钢电偶腐蚀Cl-浓度腐蚀行为    
Abstract

The galvanic corrosion behavior of the couple of 5083Al-alloy and 30CrMnSiA steel in 0.05, 0.1, 0.6 and 0.85 mol/L NaCl solutions was studied by means of immersion test, corrosion morphology observation, corrosion products analysis and electrochemical measurements, while the corrosion mechanism of the galvanic couple in 0.6 mol/L NaCl solution was specially examined. The results showed that the galvanic current density of the galvanic couple in 0.1 mol/L NaCl solution was greater, while that in 0.85 mol/L NaCl solution was the lowest. In the case of 0.85 mol/L NaCl solution, the activity of Cl- was weakened and the dissolved oxygen content decreases, hence the cathode reaction rate decreases. The results of potentiodynamic polarization curve and electrochemical impedance spectroscopy measurements demonstrate that the corrosion resistance of Al-alloy decreased at first and then increased during the galvanic corrosion process, the dissolution of Al-alloy was inhibited by the corrosion products formed on its surface. The corrosion rate of the steel was low at the early stage as cathode, and then the corrosion rate increased gradually with the increase of time. After immersion for 15 d, the corrosion products of steel participated in the cathodic reaction and therewith accelerated the rate of charge transfer, resulting in a decrease in the corrosion resistance of Al-alloy and steel, while their corrosion rate increased substantially.

Key words5083Al-alloy    30CrMnSiA steel    galvanic corrosion    concentration of Cl-    corrosion behavior
收稿日期: 2020-10-06     
ZTFLH:  TG172  
基金资助:装备预研领域基金(61409220202)
通讯作者: 刘宗德     E-mail: lzd@ncepu.edu.cn
Corresponding author: LIU Zongde     E-mail: lzd@ncepu.edu.cn
作者简介: 刘泉兵,男,1994年生,博士生

引用本文:

刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
Quanbing LIU, Zongde LIU, Shengyang GUO, Yi XIAO. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 883-891.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.184      或      https://www.jcscp.org/CN/Y2021/V41/I6/883

MaterialMgSiFeCuMnCrZnTiAlCPNiMo
5083 Al-alloy4.210.260.430.050.290.130.009---Bal.------------
30CrMnSiA---1.02Bal.0.030.920.96---0.017---0.310.010.040.05
表1  5083铝合金和30CrMnSiA钢的化学成分表
图1  5083铝合金和30CrMnSiA钢电偶对在不同Cl-浓度溶液中浸泡1 d后的宏观形貌
图2  电偶对在不同Cl-浓度溶液中浸泡1 d后5083铝合金的腐蚀形貌
图3  5083铝合金和30CrMnSiA钢在不同Cl-浓度溶液中浸泡15 d后的腐蚀形貌
Concentration / mol/LMgAlCl
0.051.4867.672.77
0.10.1143.801.85
0.6---48.238.02
0.85---54.534.60
表2  在不同Cl-浓度溶液中浸泡15 d后的电偶对中铝合金腐蚀区域的EDS分析结果
图4  5083铝合金和30CrMnSiA钢在不同Cl-浓度溶液中浸泡15 d后的腐蚀产物XRD谱
图5  5083铝合金和30CrMnSiA钢在0.6 mol/L NaCl溶液中的开路电位图
图6  5083铝合金和30CrMnSiA钢在不同Cl-浓度溶液中的动电位极化曲线图
Concentration mol/LEcorr / mVSCEIcorr / μA·cm-2Epit / mVSCE
AlSteelAlSteelAlSteel
0.05-789-5560.3519.19-660---
0.1-776-5070.5719.49-700---
0.6-858-4521.0523.33-754---
0.85-733-5990.6316.07------
表3  5083铝合金和30CrMnSiA钢在不同Cl-浓度中的电化学参数
图7  5083铝合金和30CrMnSiA钢电偶对在不同浓度下电偶电流密度和pH随时间的变化曲线
图8  5083铝合金和30CrMnSiA钢在0.6 mol/L NaCl溶液中的动电位极化曲线
MaterialIcorr / μA·cm-2-Ecorr / mVSCE
1 d5 d7 d10 d15 d1 d5 d7 d10 d15 d
30CrMnSiA4.405.077.339.2815.67617606635643640
5083 Al0.312.371.440.510.07841892928881836
表4  5083铝合金和30CrMnSiA钢在0.6 mol/L NaCl溶液中的电化学参数表
图9  5083铝合金和30CrMnSiA钢电偶对在0.6 mol/L NaCl溶液浸泡不同周期的Nyquist图和Bode图
图10  30CrMnSiA钢及5083铝合金阻抗谱的等效电路图
Time dRsΩ·cm2Yo,1S sn·cm-2·105n1RctΩ·cm2Yo,2S sn·cm-2·10-3n2Yo,1S sn·cm-2·10-4RfΩ·cm2CbμF·cm-2RbkΩ·cm2CdlμF·cm-2
12.0772.2890.94133901.150.72---------------
53.0992.9810.88310017.660.92---------------
73.3552.4790.9243172.930.45---------------
101.7732.660.9270601.670.62---------------
1584.56---0.552072------1.703339294.522.52378.8
表5  5083铝合金阻抗谱拟合的等效电路参数
Time dRsΩ·cm2CdlμF·cm-2RfΩ·cm2Yo,1S sn·cm-2·10-4n1RctΩ·cm2
14.187565.9509.300.751311
58.539415.5108.741.230.793003
79.151555.326.3974.450.752483
101.675387.613.7245.520.712135
151.675844.313.41121.90.721871
表6  30CrMnSiA钢阻抗谱拟合的等效电路参数
1 Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
2 Knight S P, Salagaras M, Trueman A R. The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography [J]. Corros. Sci., 2011, 53: 727
3 Lee H, Kim Y, Jeong Y, et al. Effects of testing variables on stress corrosion cracking susceptibility of Al 2024-T351 [J]. Corros. Sci., 2012, 55: 10
4 El-Dahshan M E, El Din A M S, Haggag H H. Galvanic corrosion in the systems titanium/316 L stainless steel/Al brass in Arabian Gulf water [J]. Desalination, 2002, 142: 161
5 Varela F E, Kurata Y, Sanada N. The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple (prediction by boundary element method) [J]. Corros. Sci., 1997, 39: 755
6 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
6 刘艳洁, 王振尧, 王彬彬等. 实时监测技术研究薄液膜下电偶腐蚀的机理 [J]. 中国腐蚀与防护学报, 2017, 37: 261
7 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
7 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
8 Li T, Dong C F, Li X G, et al. Influence of environmental factors on atmospheric corrosion of aluminum alloys and its dynamic time dependence [J]. Corros. Sci., 2009, 30: 215
8 李涛, 董超芳, 李晓刚等. 环境因素对铝合金大气腐蚀的影响及其动态变化规律研究 [J]. 腐蚀与防护, 2009, 30: 215
9 Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
9 孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219
10 Zhu H M, Zheng Q F, Xie S S. Study on atmospheric corrosion of aluminium and its alloy at different distance away from seashore in wannine maring environments [J]. Chin. J. Rare Met., 2002, 26: 456
10 朱红嫚, 郑弃非, 谢水生. 万宁地区铝及铝合金不同距海点的大气腐蚀研究 [J]. 稀有金属, 2002, 26: 456
11 Hu J Z, Liu Q B, Hu H H, et al. Cl- sedimentation rate in atmosphere of tropical island [J]. Corros. Prot., 2018, 39: 463
11 胡杰珍, 刘泉兵, 胡欢欢等. 热带海岛大气中氯离子沉降速率 [J]. 腐蚀与防护, 2018, 39: 463
12 Chen Y L, Zhao H J, Wang C G, et al. Short-term electrochemical corrosion behavior of 7B04 aluminum alloy and 30CrMnSiA Steel [J]. Equip. Environ. Eng., 2018, 15(1): 34
12 陈跃良, 赵红君, 王晨光等. 7B04铝合金和30CrMnSiA钢短期腐蚀的电化学行为研究 [J]. 装备环境工程, 2018, 15(1): 34
13 Palani S, Hack T, Deconinck J, et al. Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination [J]. Corros. Sci., 2014, 78: 89
14 Yao X, Cai C, Li J F, et al. Early stage galvanic corrosion of 5383Al alloy coupled with 907 steel and aluminum bronze in 3.5% NaCl solution [J]. Corros. Sci. Prot. Technol., 2015, 27: 419
14 姚希, 蔡超, 李劲风等. 5383铝合金与907钢和铝青铜早期电偶腐蚀的平面分布 [J]. 腐蚀科学与防护技术, 2015, 27: 419
15 Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1872
16 Li W J. Study of the catalytic and cooperating action of Fe(Ⅱ) in the process of transformation from Fe(OH)2 to γ-FeOOH [D]. Shijiazhuang: Hebei Normal University, 2005
16 李文君. Fe(Ⅱ) 在空气氧化Fe(OH)2形成γ-FeOOH过程中的协同催化作用 [D]. 石家庄: 河北师范大学, 2005
17 Yan M C, Sun C, Xu J, et al. Role of Fe oxides in corrosion of pipeline steel in a red clay soil [J]. Corros. Sci., 2014, 80: 309
18 Hao L, Zhang S X, Dong J H, et al. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere [J]. Corros. Sci., 2012, 58: 175
[1] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[2] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[3] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[4] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[5] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[6] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[7] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[8] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[9] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[10] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[11] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[12] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[13] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[14] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[15] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.