Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 899-904    DOI: 10.11902/1005.4537.2020.161
  研究报告 本期目录 | 过刊浏览 |
相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响
徐桂芳(), 李园, 雷玉成, 朱强
江苏大学材料科学与工程学院 镇江 212013
Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy
XU Guifang(), LI Yuan, LEI Yucheng, ZHU Qiang
School of Materials Science and Engineering, Jiangsu University,Zhenjiang 212013, China
全文: PDF(6890 KB)   HTML
摘要: 

对高氮奥氏体不锈钢在400 ℃不同相对流速 (0、0.92、1.27、1.61和2.01 m/s)、氧饱和的液态铅铋合金 (LBE) 中进行1000 h的腐蚀实验。采用扫描电镜 (SEM)、能谱仪 (EDS)、X射线衍射 (XRD) 对腐蚀后的试样表面和截面进行分析。结果表明:相对流速对试样的腐蚀行为有较大影响:静态试样,初始表面的氧化层可有效阻止高氮钢的进一步氧化;动态试样,表面初始氧化层遭到破坏,出现氧化腐蚀和溶解腐蚀共存状态。相对流速从0增至0.92 m/s,初始氧化层的破坏导致表层以下的合金发生扩散氧化,以氧化腐蚀为主;相对流速从0.92 m/s增加到2.01 m/s,较大的相对流速将扩散至表面的合金元素及时带走,溶解腐蚀占比逐渐增多,氧化腐蚀逐渐减少。氧化腐蚀产物为具有双层结构的氧化物颗粒,外层为疏松多孔的Fe3O4,内层为 (Fe,Cr)3O4

关键词 高氮奥氏体不锈钢铅铋共晶合金(LBE)相对流速元素扩散氧化腐蚀    
Abstract

The corrosion behavior of high nitrogen austenitic stainless steel in liquid LBE saturated with oxygen at 400 ℃, by different relative flow velocity (0, 0.92, 1.27, 1.61 and 2.01 m/s) for 1000 h was studied by means of SEM with EDS and XRD. The results show that the relative flow velocity may affect the corrosion mechanism of the steel. For static samples, the initial formed oxide scale on the steel surface can effectively prevent further oxidation of high nitrogen steel; for dynamic samples, the initial oxide scale on the steel surface is destroyed, and the coexistence of oxidizing corrosion and dissolving corrosion may occur. When the relative flow velocity increases from 0 to 0.92 m/s, the damage of the initial oxide scale leads to diffusion oxidation of the steel beneath the scale, but the process is mainly oxidizing corrosion; when the relative flow rate increases from 0.92 to 2.01 m/s, alloying elements, which migrate outwards to the surface, will be removed in time at a higher relative flow velocity, thereby the proportion of dissolving corrosion increases, and the oxidizing corrosion decreases gradually. The oxidizing corrosion products composited of oxide particles with double-layered structure, the outer layer is porous Fe3O4, and the inner layer is (Fe,Cr)3O4.

Key wordshigh nitrogen austenitic stainless steel    lead bismuth eutectic alloy (LBE)    relative flow velocity    element diffusion    oxidation corrosion
收稿日期: 2020-09-10     
ZTFLH:  TL341  
基金资助:江苏省产业前瞻与共性关键技术(BE2017127)
通讯作者: 徐桂芳     E-mail: gfxu@ujs.edu.cn
Corresponding author: XU Guifang     E-mail: gfxu@ujs.edu.cn
作者简介: 徐桂芳,女1966年生,博士,教授

引用本文:

徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
Guifang XU, Yuan LI, Yucheng LEI, Qiang ZHU. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 899-904.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.161      或      https://www.jcscp.org/CN/Y2021/V41/I6/899

图1  T型试样尺寸
图2  腐蚀试验装置
图3  FLUENT模拟的试样表面LBE速度剖面图
图4  不同相对流速下腐蚀1000 h试样表面SEM像
图5  不同相对流速下试样表面化合物覆盖率
图6  试样H1-4腐蚀表面SEM像和EDS元素分析
图7  不同相对流速下试样腐蚀表面的XRD谱
图8  不同相对流速下腐蚀截面SEM像和EDS图
1 Kurata Y, Futakawa M, Saito S. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations [J]. J. Nucl. Mater., 2008, 373: 164
2 Zhang J, Li N, Chen Y T, et al. Corrosion behaviors of US steels in flowing lead bismuth eutectic (LBE) [J]. J. Nucl. Mater., 2005, 336: 1
3 Wu Y C, Huang Q Y, Bai Q Y, et al. Preliminary experimental study on the corrosion of structural steels in liquid lead bismuth loop [J]. Chin. J. Nucl. Sci. Eng., 2010, 30: 238
3 吴宜灿, 黄群英, 柏云清等. 液态铅铋回路设计研制与材料腐蚀实验初步研究 [J]. 核科学与工程, 2010, 30: 238
4 Aiello A, Azzati M, Benamati G, et al. Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration [J]. J. Nucl. Mater., 2004, 335: 169
5 Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600℃ [J]. Corros. Sci., 2006, 48: 577
6 Yamaki E, Ginestar K, Martinelli L. Dissolution mechanism of 316L in lead-bismuth eutectic at 500 ℃ [J]. Corros. Sci., 2011, 53: 3075
7 Koury D, Johnson A L, Ho T, et al. Analysis of bi-layer oxide on austenitic stainless steel, 316L, exposed to lead-bismuth eutectic (LBE) by x-ray photoelectron spectroscopy (XPS) [J]. J. Nucl. Mater., 2013, 440: 28
8 Wang Z H, Chen H. Flowing liquid metal corrosion of structural steels in the Pb-Bi eutectic [J]. Adv. Mat. Res., 2012, 581: 1040
9 Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion [J]. J. Nucl. Mater., 2008, 373: 351
10 Shi F, Cui W F, Wang L J, et al. Advance in the research of high-nitrogen austenitic stainless steels [J]. Shanghai Met., 2006, 28(5): 45
10 石锋, 崔文芳, 王立军等. 高氮奥氏体不锈钢研究进展 [J]. 上海金属. 2006, 28(5): 45
11 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (part Ⅲ) [J]. Corros. Sci., 2008, 50: 2549
12 Chakraborty P, Singh V, Bysakh S, et al. Short-term corrosion behavior of indian RAFM steel in liquid Pb-Li: Corrosion mechanism and effect of alloying elements [J]. J. Nucl. Mater., 2019, 520: 208
13 Li M Y, Zhang Z Z, Chen L L, et al. Study on corrosion products of T91 and 316L steels in oxygen controlled LBE for 600 hrs [J]. Nucl. Sci. Eng., 2018, 38: 784
13 李明杨, 张志忠, 陈刘利等. T91和316L钢在氧控铅铋中600小时后腐蚀产物分析 [J]. 核科学与工程, 2018, 38: 784
14 Luo M, Lei Y C, Chen G, et al. Effect of flow rate on corrosion behavior of 316L stainless steel welding seam in liquid lead bismuth [J]. Trans. China Weld. Inst., 2019, 40(3): 65
14 罗梦, 雷玉成, 陈钢等. 相对流速对316L钢焊缝在液态铅铋合金中腐蚀行为的影响 [J]. 焊接学报, 2019, 40(3): 65
15 Xie B, Hu R, Weng K P. Study of surficial corrosion of 304L stainless steel in liquid LiPb alloy [J]. Sichuan. Chem. Ind., 2009, 12(1): 30
15 谢波, 胡睿, 翁葵平. 304L不锈钢在液态锂铅合金中的表面腐蚀研究 [J]. 四川化工, 2009, 12(1): 30
16 Kamachi M U, Baldev R. Translated by Li J, Huang Y H. High Nitrogen Steels and Stainless Steels-manufacturing, Properties and Applications [M]. Beijing: Chemical Industry Press, 2006: 110
16 卡曼奇·曼德里U, 贝德威R著, 李晶, 黄运华译. 高氮钢和不锈钢-生产、性能与应用 [M]. 北京: 化学工业出版社, 2006: 110
17 Tsisar V, Schroer C, Wedemeyer O, et al. Corrosion behaovior of austenitic 1.4970, 316L and 1.4571 in flowing LBE at 450 and 550 with 10-7mass% dissolved oxygen [J]. J. Nucl. Mater., 2014, 454: 332
18 Ju N, Lei Y C, Chen G, et al. Corrosion behavior of stainless steel 410 in flowing lead-bismuth eutectic alloy at 550 ℃ [J]. Mater. Rep., 2019, 33: 3489
18 鞠娜, 雷玉成, 陈钢等. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为 [J]. 材料导报, 2019, 33: 3489
19 Zhang Z M, Wang J Q. Effects of surface condition on corrosion and stress corrosion cracking of alloy 690TT [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 441
19 张志明, 王俭秋. 表面状态对690TT合金腐蚀及应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2011, 31: 441
[1] 石践, 胡学文, 何博, 杨峥, 郭锐, 汪飞. Q345NS钢焊接接头耐硫酸腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.