|
|
管线钢土壤应力腐蚀开裂研究进展及展望 |
余德远1, 刘智勇1, 杜翠薇1, 黄辉2( ), 林楠2 |
1.北京科技大学 国家材料腐蚀与防护科学数据中心腐蚀与防护教育部重点实验室 北京 100083 2.中国特种设备检测研究院 北京 100029 |
|
Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments |
YU Deyuan1, LIU Zhiyong1, DU Cuiwei1, HUANG Hui2( ), LIN Nan2 |
1.National Materials Corrosion & Protection Data Center, Key Laboratory for Corrosion and Protection of the Ministry of Education (MOE), University of Science and Technology Beijing, Beijing 100083, China 2.China Special Equipment Inspection & Research Institute, Beijing 100029, China |
引用本文:
余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
Deyuan YU,
Zhiyong LIU,
Cuiwei DU,
Hui HUANG,
Nan LIN.
Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 737-747.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.211
或
https://www.jcscp.org/CN/Y2021/V41/I6/737
|
1 |
Gao P, Gao Z Y, Liu G R. New progress in China's oil and gas pipeline construction in 2019 [J]. Int. Petrol. Econ., 2020, 28(3): 52
|
1 |
高鹏, 高振宇, 刘广仁. 2019年中国油气管道建设新进展 [J]. 国际石油经济, 2020, 28(3): 52
|
2 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
|
3 |
Kentish P J. Gas pipeline failures: Australian experience [J]. Br. Corros. J., 1985, 20: 139
|
4 |
Parkins R N, Blanchard W K, Delanty B S. Transgranular stress corrosion cracking of high-pressure pipelines in contact with solutions of near neutral pH [J]. Corrosion, 1994, 50: 394
|
5 |
Sridhar N, Lichtner P C, Dunn D S. Evolution of environment under disbonded coating on cathodically protected pipeline-preliminary modeling and experimental studies [A]. Corrosion /1998 [C]. Houston, Texas, 1998: 680
|
6 |
Parkins R N. The application of stress corrosion crack growth kinetics to predicting lifetimes of structures [J]. Corros. Sci., 1989, 29: 1019
|
7 |
Public inquiry concerning stress corrosion cracking on Canadian oil and gas pipelines: report of the inquiry [R]. National Energy Board, No: MH-2-95, Canada, 1996
|
8 |
Parkins R N. Current topics in corrosion: factors influencing stress corrosion crack growth kinetics [J]. Corrosion, 1987, 43: 130
|
9 |
Pikey A K, Lambert S B, Plumtree A. Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution [J]. Corrosion, 1995, 51: 91
|
10 |
Parkins R N. Mechanistic aspects of intergranular stress corrosion cracking of ferritic steels [J]. Corrosion, 1996, 52: 363
|
11 |
Wu R, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265: 376
|
12 |
Yamaguchi M, Shiga M, Kaburaki H. Grain boundary decohesion by sulfur segregation in ferromagnetic iron and nickel—a first-principles study [J]. Mater. Trans., 2006, 47: 2682
|
13 |
Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences [J]. Acta Mater., 2007, 55: 5139
|
14 |
Wang J Q, Atrens A, Cousens D R, et al. Measurement of grain boundary composition for X52 pipeline steel [J]. Acta Mater., 1998, 46: 5677
|
15 |
Wang J Q, Atrens A, Cousens D R, et al. Microstructure of X52 and X65 pipeline steels [J]. J. Mater. Sci., 1999, 34: 1721
|
16 |
Atrens A, Wang J Q, Stiller K, et al. Atom probe field ion microscope measurements of carbon segregation at an α:α grain boundary and service failures by intergranular stress corrosion cracking [J]. Corros. Sci., 2006, 48: 79
|
17 |
Liang P, Du C W, Li X G, et al. Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku'erle soil simulated solution [J]. Int. J. Miner. Metall. Mater., 2009, 16: 407
|
18 |
Song L F, Liu Z Y, Li X G, et al. Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/bicarbonate solution [J]. Constr. Build. Mater., 2020, 263: 120124
|
19 |
Jack T R, Wilmott M J, Sutherby R L. Indicator minerals formed during external corrosion of line pipe [J]. Mater. Perform., 1995, 34: 19
|
20 |
Gonzalez-Rodriguez J G, Casales M G, Salinas-Bravo V M, et al. Effect of microstructure on the stress corrosion cracking of X-80 pipeline steel in diluted sodium bicarbonate solutions [J]. Corrosion, 2002, 58: 584
|
21 |
Rebak R B, Xia Z, Safruddin R, et al. Effect of solution composition and electrochemical potential on stress corrosion cracking of X-52 pipeline steel [J]. Corrosion, 1996, 52: 396
|
22 |
Qiao L J, Luo J L, Mao X. Hydrogen evolution and enrichment around stress corrosion crack tips of pipeline steels in dilute bicarbonate solution [J]. Corrosion, 1998, 54: 115
|
23 |
Chen W, King F, Vokes E. Characteristics of near-neutral-pH stress corrosion cracks in an X-65 pipeline [J]. Corrosion, 2002, 58: 267
|
24 |
Qiao L J, Mao X. Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking [J]. Acta Metall. Mater., 1995, 43: 4001
|
25 |
Gu B, Luo J L, Mao X. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution [J]. Corrosion, 1999, 55: 96
|
26 |
Lu B T, Luo J L, Norton P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH [J]. Acta Mater., 2009, 57: 41
|
27 |
Fang B Y, Atrens A, Wang J Q, et al. Review of stress corrosion cracking of pipeline steels in “low” and “high” pH solutions [J]. J. Mater. Sci., 2003, 38: 127
|
28 |
Chung H M, Ruther W E, Sanecki J E, et al. Irradiation-assisted stress corrosion cracking of austenitic stainless steels: Recent progress and new approaches [J]. J. Nucl. Mater., 1996, 239: 61
|
29 |
Parkins R N, Slattery P W, Poulson B S. The effects of alloying additions to ferritic steels upon stress corrosion cracking resistance [J]. Corrosion, 1981, 37: 650
|
30 |
Kim W K, Koh S U, Yang B Y, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels [J]. Corros. Sci., 2008, 50: 3336
|
31 |
Domizzi G, Anteri G, Ovejero-García J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels [J]. Corros. Sci., 2001, 43: 325
|
32 |
Dong C F, Li X G, Liu Z Y, et al. Hydrogen-induced cracking and healing behaviour of X70 steel [J]. J. Alloy. Compd., 2009, 484: 966
|
33 |
Bulger J T, Lu B T, Luo J L. Microstructural effect on near-neutral pH stress corrosion cracking resistance of pipeline steels [J]. J. Mater. Sci., 2006, 41: 5001
|
34 |
Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci, 2008, 50: 2251
|
35 |
Li X D, Liu J H, Sun J B, et al. Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: Part I. In acidic soil environment [J]. Corros. Sci., 2019, 160: 108167
|
36 |
Li Y, Liu Z Y, Fan E D, et al. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64: 141
|
37 |
Williams D E, Kilburn M R, Cliff J, et al. Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion [J]. Corros. Sci., 2010, 52: 3702
|
38 |
Elboujdaini M, Revie R W. Metallurgical factors in stress corrosion cracking (SCC) and hydrogen-induced cracking (HIC) [J]. J. Solid State Electrochem., 2009, 13: 1091
|
39 |
Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
|
40 |
Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy, 2010, 35: 8014
|
41 |
Liou H Y, Shieh R I, Wei F I, et al. Roles of microalloying elements in hydrogen induced cracking resistant property of HSLA steels [J]. Corrosion, 1993, 49: 389
|
42 |
Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrogen Energy, 2009, 34: 9879
|
43 |
Arafin M A, Szpunar J A. A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies [J]. Corros. Sci., 2009, 51: 119
|
44 |
Wang J Q, Atrens A. SCC initiation for X65 pipeline steel in the "high" pH carbonate/bicarbonate solution [J]. Corros. Sci., 2003, 45: 2199
|
45 |
Park J, Pyun S I, Na K H, et al. Effect of passivity of the oxide film on low-pH stress corrosion cracking of X65 pipeline steel in bicarbonate solution [J]. Corrosion, 2002, 58: 329
|
46 |
Wang Z F, Atrens A. Initiation of stress corrosion cracking for pipeline steels in a carbonate-bicarbonate solution [J]. Metall. Mater. Trans., 1996, 27A: 2686
|
47 |
Zhang L, Li X G, Du C W, et al. Effect of applied potentials on stress corrosion cracking of X70 pipeline steel in simulated Ku'erle soil [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 353
|
47 |
张亮, 李晓刚, 杜翠薇等. 外加电位对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂敏感性的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 353
|
48 |
Liu Z Y, Lu L, Huang Y Z, et al. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water [J]. Corrosion, 2014, 70: 678
|
49 |
Cheng Y F. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines [J]. Electrochim. Acta, 2007, 52: 2661
|
50 |
Cheng Y F, Niu L. Mechanism for hydrogen evolution reaction on pipeline steel in near-neutral pH solution [J]. Electrochem. Commun., 2007, 9: 558
|
51 |
Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines [J]. Electrochim. Acta, 2007, 52: 8111
|
52 |
Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution [J]. Corros. Sci., 2009, 51: 1714
|
53 |
Chen W, Kania R, Worthingham R, et al. Transgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions: The role of hydrogen [J]. Acta Mater., 2009, 57: 6200
|
54 |
Li Y, Liu Z Y, Fan E D, et al. The effect of crack tip environment on crack growth behaviour of a low alloy steel at cathodic potentials in artificial seawater [J]. J. Mater. Sci. Technol., 2020, 54: 119
|
55 |
Sutcliffe J M, Fessler R R, Boyd W K, et al. Stress corrosion cracking of carbon steel in carbonate solutions [J]. Corrosion, 1972, 28: 313
|
56 |
Yan M C, Weng Y J. Effects of temperature and stress on electrochemical behaviors of pipe steels in stress corrosion process [J]. Petrol. Eng. Constr., 2004, 30(3): 4
|
56 |
闫茂成, 翁永基. 温度和应力对管道钢应力腐蚀过程电化学行为的影响 [J]. 石油工程建设, 2004, 30(3): 4
|
57 |
Zhang L, Li X G, Du C W, et al. Effect of temperature on stress corrosion cracking behavior of X70 pipeline steel in alkali solution [J]. Mater. Mech. Eng., 2009, 33(6): 10
|
57 |
张亮, 李晓刚, 杜翠薇等. 温度对X70管线钢在碱性溶液中应力腐蚀开裂行为的影响 [J]. 机械工程材料, 2009, 33(6): 10
|
58 |
Eadie R L, Szklarz K E, Sutherby R L. Corrosion fatigue and near-neutral pH stress corrosion cracking of pipeline steel and the effect of hydrogen sulfide [J]. Corrosion, 2005, 61: 167
|
59 |
Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence [J]. Acta Mater., 2007, 55: 29
|
60 |
Chen W, van Boven G, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels-Part II: Crack dormancy [J]. Acta Mater., 2007, 55: 43
|
61 |
Chu W Y, Qiao L J, Chen Q Z, et al. Faults and Environmental Faults [M]. Beijing: Science Press, 2000
|
61 |
褚武扬, 乔利杰, 陈奇志等. 断裂与环境断裂 [M]. 北京: 科学出版社, 2000
|
62 |
Harle B A, Beavers J A. Technical note: low-pH stress corrosion crack propagation in API X-65 line pipe steel [J]. Corrosion, 1993, 49: 861
|
63 |
Li H L, Gao K W, Qiao L J, et al. Strength effect in stress corrosion cracking of high-strength steel in aqueous solution [J]. Corrosion, 2001, 57: 295
|
64 |
Zheng W Y, Bibby D, Li J, et al. Near-neutral pH SCC of two line pipe steels under quasi-static stressing conditions [A]. Proceedings of the 2006 International Pipeline Conference [C]. Calgary, 2006
|
65 |
Serebrinsky S A, Duffó G S, Galvele J R. Effect of strain rate on stress corrosion crack velocity: Difference between intergranular and transgranular cracking [J]. Corros. Sci., 1999, 41: 191
|
66 |
Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52: 375
|
67 |
Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
|
68 |
Parkins R N. Predictive approaches to stress corrosion cracking failure [J]. Corros. Sci., 1980, 20: 147
|
69 |
Parkins R N. Strain rate effects in stress corrosion cracking [J]. Corrosion, 1990, 46: 178
|
70 |
Andresen P L, Ford F P. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems [J]. Mater. Sci. Eng., 1988, 103A: 167
|
71 |
Andresen P L, Ford F P. Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs [J]. Int. J. Press. Vessels Pip., 1994, 59: 61
|
72 |
Gao Y C, Hwang K. Elastic plastic fields in steady crack growth in a strain hardening material [J]. Geochem. Int., 1981, 50: 330
|
73 |
Peng Q J, Kwon J, Shoji T. Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water [J]. J. Nucl. Mater., 2004, 324: 52
|
74 |
Newman R C, Stability Healey C., validity, and sensitivity to input parameters of the slip-dissolution model for stress-corrosion cracking [J]. Corros. Sci., 2007, 49: 4040
|
75 |
Shoji T, Lu Z P, Murakami H. Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics [J]. Corros. Sci., 2010, 52: 769
|
76 |
Cheng Y F. Thermodynamically modeling the interactions of hydrogen, stress and anodic dissolution at crack-tip during near-neutral pH SCC in pipelines [J]. J. Mater. Sci., 2007, 42: 2701
|
77 |
Song F M. Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH [J]. Corros. Sci., 2009, 51: 2657
|
78 |
Lambert S B, Beavers J A, Delanty B, et al. Mechanical factors affecting stress corrosion crack growth rates in buried pipelines [A]. Proceedings of the International Pipeline Conference [C]. New York, 2000: 961
|
79 |
Wei R P. Environmental considerations for fatigue cracking [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 845
|
80 |
Paris P, Erdogan F. A critical analysis of crack propagation laws [J]. J. Basic Eng., 1963, 85: 528
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|