Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 843-848    DOI: 10.11902/1005.4537.2020.163
  研究报告 本期目录 | 过刊浏览 |
304不锈钢表面硼化物熔覆层的耐腐蚀性能研究
郑世恩1, 潘应君1(), 张恒2, 柯德庆1, 杨岭1, 朱星宇1
1.武汉科技大学材料与冶金学院 武汉 430081
2.武汉春禾科技有限公司 武汉 430223
Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel
ZHENG Shien1, PAN Yingjun1(), ZHANG Heng2, KE Deqing1, YANG Ling1, ZHU Xingyu1
1.College of Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2.Wuhan Chunhe Technology Co, Ltd. , Wuhan 430223, China
全文: PDF(3127 KB)   HTML
摘要: 

采用等离子熔覆技术在304不锈钢表面制备一层三元硼化物金属陶瓷覆层。通过光学显微镜、X射线衍射和扫描电镜对熔覆层微观结构和相组成进行了表征,利用显微硬度计测试了熔覆层的硬度分布,并对熔覆层的耐蚀性进行了研究。结果表明:硼化物熔覆层与304不锈钢界面处没有宏观裂纹、孔洞等缺陷,形成冶金结合;熔覆层平均显微硬度为630.4 HV0.5,约是304不锈钢 (HV0.5≤200) 的3倍,有效提高了304不锈钢表面硬度;304不锈钢和熔覆层在10%HNO3+3%HF酸性溶液中浸泡48 h后,两者的最大腐蚀深度分别为77和9 μm,即熔覆层耐腐蚀性能优于304不锈钢。

关键词 304不锈钢等离子熔覆硼化物覆层耐腐蚀性硬度    
Abstract

A ternary boride cermet coating was prepared on 304 stainless steel by plasma cladding technique. The microstructure and phase composition of the cladding layer were characterized by optical microscope, scanning electron microscope and X-ray diffraction. The hardness distribution of the cladding layer was measured with a micro-hardness tester, and the corrosion resistance of the cladding layer was also studied. The results showed that the boride cladding layer forms a good metallurgical bond with the 304 stainless steel, and no defects such as macro cracks and holes were found at the interface. The average microhardness of the cladding layer was 630.4 HV0.5, which was three times higher than 304 stainless steel (HV0.5≤200), effectively improving the surface hardness of 304 stainless steel. After immersion test in 10%HNO3+3%HF acidic solution for 48 h, the maximum corrosion depth ratio of the bare 304 stainless steel and the cladding layer is 77 and 9 μm respectively, so the corrosion resistance of the cladding layer is better than that of 304 stainless steel.

Key words304 stainless steel    plasma cladding    boride coating    corrosion resistance    hardness
收稿日期: 2020-09-16     
ZTFLH:  TG174  
基金资助:武汉科技大学省部共建耐火材料与冶金国家重点实验室青年资金(2018QN04);武汉科技大学钢铁冶金及资源利用省部;共建教育部重点实验室开放基金(FMRUlab17-7)
通讯作者: 潘应君     E-mail: hbwhpyj@163.com
Corresponding author: PAN Yingjun     E-mail: hbwhpyj@163.com
作者简介: 郑世恩,男,1994年生,硕士生

引用本文:

郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
Shien ZHENG, Yingjun PAN, Heng ZHANG, Deqing KE, Ling YANG, Xingyu ZHU. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 843-848.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.163      或      https://www.jcscp.org/CN/Y2021/V41/I6/843

图1  304不锈钢表面硼化物熔覆层截面金相组织
图2  304不锈钢表面熔覆层XRD谱
图3  不同温度退火熔覆层硬度曲线
图4  304不锈钢和熔覆层混合酸中浸泡48 h后腐蚀形貌
图5  熔覆层/304不锈钢界面形貌及元素线扫描图
图6  熔覆层组织形貌
SpectrumMass fraction / %Atomic fraction / %
MoFeCrNiMoFeCrNi
133.0750.0016.93---22.0257.1820.80---
26.4175.3113.384.843.8176.8514.654.70
324.5557.1914.833.6015.7663.0717.573.60
表1  图6中各点EDS分析
图7  熔覆层及304不锈钢在不同腐蚀条件下极化曲线
SampleCorrosion conditionEcorr / mVIcorr / A·cm-2
304 stainless steel10%HNO3+3%HF-144.5432.4872×10-3
5%NaCl-292.3395.0461×10-7
Cladding layer10%HNO3+3%HF-108.225.43463×10-3
5%NaCl-370.6222.25786×10-6
表2  304不锈钢和硼化物熔覆层极化曲线拟合结果
1 Liu X, Yan B H, Liu Y R. Corrosion behavior of 304 stainless steel in dilute sulfuric acid [J]. Sichuan Metall., 2017, 39(5): 57
1 刘欣, 闫秉昊, 刘友荣. 304不锈钢在稀硫酸溶液中的腐蚀行为探讨 [J]. 四川冶金, 2017, 39(5): 57
2 Li W H. Effect of Mo/TiC content on microstructure and properties of Mo2FeB2-TiC multiphase cermets [J]. Heat Treat. Met., 2019, 44(8): 73
2 李文虎. Mo/TiC含量对Mo2FeB2-TiC复相金属陶瓷组织和性能的影响 [J]. 金属热处理, 2019, 44(8): 73
3 Wang X R, Li H, Yan H Y, et al. Progress in application research of metal-base ceramics [J]. Hot Work. Technol., 2019, 48(14): 12
3 王新蕊, 李慧, 严红燕等. 金属基陶瓷的应用研究进展 [J]. 热加工工艺, 2019, 48(14): 12
4 Ma D D. Influencing factors and development trend of Ti(C,N)-based cermets [J]. Ceramics, 2018, (7): 20
4 马调调. Ti(C,N) 基金属陶瓷性能影响因素及发展趋势 [J]. 陶瓷, 2018, (7): 20
5 Turchi C. Cermet material could aid the development of future power plants [J]. Nature, 2018, 562: 346
6 Villars P, Cenzual K, Gladyshevskii R, et al. Mo2FeB2 [J]. Landolt Börnstein, 2012, 39: 439
7 Ke D, Pan Y, Xu Y, et al. Microstructure and mechanical properties of Mo2FeB2 ceramic-steels with Nb/V addition [J]. Adv. Appl. Ceram., 2017, 116: 92
8 Yamasaki Y, Nishi M, Takagi K I. Development of very high strength Mo2NiB2 complex boride base hard alloy [J]. J. Solid State Chem., 2004, 177: 551
9 Rao Q L, Wang H W, Zhou R H. Structure transformations and property of electroless Ni-B coating [J]. J. Mater. Eng., 2000, (6): 30
9 饶群力, 王浩伟, 周尧和. 高硬度镍硼合金涂层的组织转变和性能 [J]. 材料工程, 2000, (6): 30
10 Ke D Q, Pan Y J, Xu Y Y, et al. VC and Cr3C2 doped WCoB-TiC ceramic composites prepared by hot-pressing [J]. Int. J. Refract. Met. Hard Mater., 2017, 68: 24
11 Ke D Q, Pan Y J, Lu X F, et al. Influence and effectivity of Sm2O3 and Cr3C2 grain growth inhibitors on sintering of WCoB-TiC based cermets [J]. Ceram. Int., 2015, 41: 15235
12 Ke D Q, Pan Y J, Tong X Y. Study on the microstructure and properties of Ni60 coating by plasma spray welding on copper [J]. Surf. Technol., 2013, 42(4): 91
12 柯德庆, 潘应君, 童向阳. 纯铜表面等离子喷焊Ni60涂层组织及性能的研究 [J]. 表面技术, 2013, 42(4): 91
13 Natarajan S. Thermochemical surface engineering of steels [J]. Surf. Eng., 2015, 31: 875
14 Quan C, Wang P, Deng S J, et al. Cathode plasma electrolytic deposition with large area [J]. Met. World, 2015, (1): 78
14 权成, 王鹏, 邓舜杰等. 阴极等离子电解大面积沉积涂层技术 [J]. 金属世界, 2015, (1): 78
15 Chan C W, Carson L, Smith G C, et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering [J]. Appl. Surf. Sci., 2017, 404: 67
16 Manzhirov A V. Advances in the theory of surface growth with applications to additive manufacturing technologies [J]. Proced. Eng., 2017, 173: 11
[1] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[2] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[3] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[4] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[5] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[6] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[7] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[9] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[10] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[12] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[13] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[15] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.