Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 871-876    DOI: 10.11902/1005.4537.2020.180
  研究报告 本期目录 | 过刊浏览 |
Q235钢在德阳大气环境中腐蚀行为研究
王志高1, 海潮2, 姜杰3, 兰新生1, 杜翠薇2(), 李晓刚2
1.国网四川省电力公司电力科学研究院 成都 610041
2.北京科技大学 腐蚀与防护中心 北京 100083
3.成都理工大学机电工程学院 成都 610059
Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year
WANG Zhigao1, HAI Chao2, JIANG Jie3, LAN Xinsheng1, DU Cuiwei2(), LI Xiaogang2
1.State Grid Sichuan Electric Power Research Institute, Chengdu 610041, China
2.Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
3.School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(7357 KB)   HTML
摘要: 

通过失重实验、宏观形貌观察、SEM分析、腐蚀产物分析和电化学测试研究了电网设备主要金属材料碳钢在四川德阳地区暴露1 a的大气腐蚀行为。结果表明,在四川德阳3个变电站环境下碳钢的平均腐蚀速率分别为13.8、23.47和40.18 μm/a,除锈后碳钢表面存在大量点蚀坑。德阳不同地区暴露碳钢的腐蚀产物主要由α-FeOOH、γ-FeOOH和Fe3O4组成,腐蚀严重地区锈层中α-FeOOH组分比例有所增加。电化学结果表明,在重工业环境下碳钢腐蚀严重,腐蚀电流密度大,锈层电阻和电荷转移电阻增大。这一结果进一步说明碳钢表面形成的锈层在一定程度上能有效保护基体,减缓基体的进一步腐蚀。

关键词 输变电设备碳钢大气腐蚀    
Abstract

The atmospheric corrosion behavior of carbon steel, the main material of power transmission and transformation equipment, was studied via fled exposure in atmospheres of three different transformer substations situated at Deyang district for one year, as well as weight loss measurement, macroscopic morphology observation, SEM analysis, corrosion product analysis and electrochemical test. The results show that the average corrosion rates of carbon steel are 13.8, 23.47, and 40.18 μm/a, corresponding to the three test sites respectively. The corrosion products of carbon steel exposed in the three test sites are mainly composed of α-FeOOH, γ-FeOOH and Fe3O4, among others, the proportion of α-FeOOH is higher in the rust layer on the steel exposed in one test site,where the atmosphere is severely corrosive. The electrochemical results show that the more serious the corrosion of carbon steel is, the higher the corrosion current density and the Rct are, which indicates that the rust layer formed on the surface of carbon steel can effectively protect the steel and slow down the further corrosion of the steel substrate.

Key wordspower transmission and transformation equipments    carbon steel    atmospheric corrosion
收稿日期: 2020-09-29     
ZTFLH:  TG174  
基金资助:中央高校基本科研基金(FRF-MP-18-002);国网四川省电力公司科技项目(521997160013)
通讯作者: 杜翠薇     E-mail: dcw@ustb.edu.cn
Corresponding author: DU Cuiwei     E-mail: dcw@ustb.edu.cn
作者简介: 王志高,男,1985年生,博士,高级工程师

引用本文:

王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
Zhigao WANG, Chao HAI, Jie JIANG, Xinsheng LAN, Cuiwei DU, Xiaogang LI. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 871-876.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.180      或      https://www.jcscp.org/CN/Y2021/V41/I6/871

图1  Q235钢在不同变电站暴露1 a的宏观形貌
图2  Q235钢在不同变电站暴露1 a的腐蚀产物表面微观形貌、截面形貌及EDS分析结果
图3  Q235钢在不同变电站暴露1 a的腐蚀产物的XRD谱
图4  Q235钢在不同变电站暴露1 a的腐蚀坑分布图
图5  Q235钢在不同变电站暴露1 a除锈后的腐蚀坑深度
图6  Q235钢在不同变电站暴露1 a的极化曲线
图7  Q235钢在不同变电站暴露1 a的EIS曲线及等效电路
AreaEcorro / mVIcorr / μA·cm-2RrRct
A substation-499.99790.64280.189.34
B substation-473.94123.46282.192.95
C substation-380.62489.468157.1280.6
表1  Q235钢在不同变电站暴露1 a的电化学拟合结果
1 Wang Z G, Tian Q Q, Geng Z, et al. Corrosion investigation and protection measures of power transmission and transformation equipment in Sichuan power grid [J]. Corros. Prot., 2021, 42(3): 34
1 王志高, 田倩倩, 耿植等. 四川电网输变电设备的腐蚀情况调查及防护措施 [J]. 腐蚀与防护, 2021, 42(3): 34
2 Liang C F, Hou W T. Atmospheric corrosivity for steels [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 1
2 梁彩凤, 侯文泰. 环境因素对钢的大气腐蚀的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 1
3 Oesch S, Heimgartner P. Environmental effects on metallic materials-results of an outdoor exposure programme running in Switzerland [J]. Mater. Corros., 1996, 47: 425
4 Saeedi M, Daneshvar S, Karbassi A R. Role of riverine sediment and particulate matter in adsorption of heavy metals [J]. Int. J. Environ. Sci. Technol., 2004, 1: 135
5 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
6 Cui Z Y, Xiao K, Dong C F, et al. Corrosion behavior of copper and brass in serious Xisha marine atmosphere [J]. Chin. J. Nonferrous Mat., 2013, 23: 742
6 崔中雨, 肖葵, 董超芳等. 西沙严酷海洋大气环境下紫铜和黄铜的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 742
7 Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
8 Zhang D, Wang Z Y, Zhou Y Z, et al. Initial corrosion behavior of galvanized steel in atmosphere by Qinghai salt lake [J]. Chin. J. Mater. Res., 2018, 32: 255
8 张丹, 王振尧, 周永璋等. 镀锌钢在青海盐湖大气环境下的初期腐蚀行为研究 [J]. 材料研究学报, 2018, 32: 255
9 Zhang Y Y, Zou Y, Wang J. Research progress on corrosion of carbon steels under rust layer in marine environment [J]. Corros. Sci. Prot. Technol., 2011, 23: 93
9 郑莹莹, 邹妍, 王佳. 海洋环境中锈层下碳钢腐蚀行为的研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 93
10 Zhang X Y, Cai J P, Ma Y J, et al. Analysis on atmospheric corrosion of weathering and carbon steels [J]. Corros. Sci. Prot. Technol., 2004, 16: 389
10 张晓云, 蔡健平, 马颐军等. 耐候钢和碳钢大气腐蚀规律分析 [J]. 腐蚀科学与防护技术, 2004, 16: 389
11 Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
11 肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律 [J]. 钢铁研究学报, 2008, 20(10): 53
12 Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
12 汪川, 曹公旺, 潘辰等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39
13 Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431
13 王力, 郭春云, 肖葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431
14 Wang Y H, Li A J, Wang J. Influence of inert particles deposition on corrosion behavior of carbon steel [A]. 2016 National Symposium on Corrosion Electrochemistry and Testing Methods [C]. Qingdao, 2016
14 王燕华, 李爱娇, 王佳. 惰性颗粒物沉积对碳钢腐蚀行为的影响研究 [A]. 2016年全国腐蚀电化学及测试方法学术交流会 [C]. 青岛, 2016
15 Feliu S, Morcillo M, Feliu S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
16 Hu X Q, Liang C H. The development and applications of AC impedance technology[J]. Corros. Prot., 2004, 25: 57
16 扈显琦, 梁成浩. 交流阻抗技术的发展与应用 [J]. 腐蚀与防护, 2004, 25: 57
17 Zhang W L, Liu J R. Research on corrosion behaviour on atmospheric corrosion resistant steel via A.C impedance [J]. Res. Iron Steel, 1996, (5): 39
17 张万灵, 刘建蓉. 交流阻抗法对耐候钢腐蚀行为的研究 [J]. 钢铁研究, 1996, (5): 39
[1] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[2] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[3] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[4] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[7] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[8] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[9] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[10] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[11] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[12] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[13] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[15] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.