Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 775-785    DOI: 10.11902/1005.4537.2020.196
  研究报告 本期目录 | 过刊浏览 |
9C系列粉末冶金高耐蚀铝合金腐蚀行为研究
房豪杰1,2,3, 曲华2,3, 杨黎晖3,4, 曾庆亚2, 王丽丹2, 袁宁2, 侯保荣3,4, 曹立新1, 袁迅道2()
1.中国海洋大学材料科学与工程学院 青岛 266011
2.青岛中科应化技术研究院 青岛 266109
3.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室 青岛 266237
4.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance
FANG Haojie1,2,3, QU Hua2,3, YANG Lihui3,4, ZENG Qingya2, WANG Lidan2, YUAN Ning2, HOU Baorong3,4, CAO Lixin1, YUAN Xundao2()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266011, China
2.Qingdao Zhongke Institute of Applied Chemistry, Qingdao 266109, China
3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
4.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
全文: PDF(3242 KB)   HTML
摘要: 

选取了9C系列铝合金9C34 (挤压成形) 和9C37 (模压成形) 以及美国5083铝合金进行对比研究,通过拉伸实验及硬度测试对比评估了各铝合金力学性能,通过盐雾实验、极化曲线和阻抗谱测试考察温度和pH对3种铝合金在不同腐蚀环境中腐蚀行为的影响规律。结果表明:9C铝合金的强度可达550 MPa,硬度为130HB,都显著高于5083铝合金的。在实验的不同温度与pH腐蚀环境中,9C铝合金同时具有与美国5083铝合金相当的优异耐蚀性,作为耐腐蚀结构材料具有明显的应用优势。

关键词 铝合金粉末冶金耐蚀性腐蚀行为力学性能    
Abstract

The 9C series Al-alloy is a kind of Al-alloy prepared by powder metallurgy technology. In order to provide a reference for the application of 9C series Al-alloy in the marine field, two grades of 9C series Al-alloy, 9C34 (extrusion forming) and 9C37 (molding forming) Al-alloy were compared with 5083 Al-alloy, especially in terms of corrosion performance. The mechanical properties of the three alloys were evaluated by tensile test and hardness test, and the effect of temperature and pH on the corrosion behavior of the alloys in different corrosive environments were comparatively investigated via salt spray tests, polarization curves measurement and electrochemical impedance spectroscopy. The results show that the strength (up to 550 MPa) and hardness (up to 130HB) of 9C Al-alloy are significantly better than that of 5083 Al-alloy. With excellent mechanical properties and high corrosion resistance, 9C series Al-alloy has obviously application prospect as corrosion-resistant structural materials.

Key wordsAl-alloy    powder metallurgy    corrosion resistance    corrosion behavior    mechanical property
收稿日期: 2020-10-19     
ZTFLH:  TG17  
基金资助:青岛海洋科学与技术试点国家实验室海洋腐蚀与防护开放工作室开放研究基金(HYFSKF-201803);广西创新驱动;发展专项 (科技重大专项)(桂科AA18242035)
通讯作者: 袁迅道     E-mail: qdjy_yxd@sina.com
Corresponding author: YUAN Xundao     E-mail: qdjy_yxd@sina.com
作者简介: 房豪杰,男,1995年生,硕士生

引用本文:

房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
Haojie FANG, Hua QU, Lihui YANG, Qingya ZENG, Lidan WANG, Ning YUAN, Baorong HOU, Lixin CAO, Xundao YUAN. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 775-785.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.196      或      https://www.jcscp.org/CN/Y2021/V41/I6/775

图1  3种铝合金的应力-应变曲线
Al-alloyTensile strength / MPaYield strength / MPaYield ratioElongation / %Hardness (HB)
9C345055000.994.80115
9C375605601.004.54130
50833152350.756.6970
表1  3种铝合金的力学性能参数
图2  3种铝合金不同时间盐雾腐蚀实验后的宏观形貌
Al-alloyCorrosion time / hTest 1Test 2Test 3Test 4Average
9C34720.02850.02860.02570.02680.0274
1440.01310.01310.01520.01470.0140
2160.01420.01240.01470.01820.0149
2880.01560.01610.01110.01340.0141
9C37720.01490.02880.03160.03690.0281
1440.02150.02120.01790.02020.0202
2160.01060.01110.01380.01510.0127
2880.01090.01020.01370.01290.0119
5083720.04860.05000.04380.04960.0481
1440.02920.02400.02620.02500.0261
2160.01950.01610.01510.01550.0165
2880.01900.01610.01670.01610.0170
表2  3种铝合金在盐雾腐蚀不同时间范围内的平均腐蚀速率
图3  3种铝合金在25 ℃,pH8.3模拟海水溶液中的极化曲线
Al-alloyEcorr / Vβa / V·dec-1βc / V·dec-1Icorr / A·cm-2
9C34-1.2060.1450.2173.16×10-6
9C37-1.1620.1400.3371.33×10-6
5083-1.1640.1940.3361.25×10-6
表3  极化曲线拟合参数
图4  3种铝合金在25 ℃,pH8.3模拟海水溶液中的Nyquist谱及其等效电路[10]
Al-alloyRs / Ω·cm2R1 / Ω·cm2C1 / F·cm-2n1
9C343.37886899.012×10-60.9375
9C372.7871.478×1046.406×10-60.9624
50833.7511.792×1045.601×10-60.9647
表4  3种铝合金在25 ℃碱性模拟海水溶液中等效电路元件拟合结果
图5  3种铝合金在pH8.3的不同温度模拟海水中的极化曲线
Al-alloyT / ℃Ecorr / VCathodic tafel slope / V·dec-1Anodic tafel slope / V·dec-1Icorr / A·cm-2
9C3415-0.8360.1760.3068.92×10-7
25-1.2060.1450.2173.16×10-6
35-1.2900.0920.5496.57×10-5
9C3715-0.8400.0960.3717.79×10-7
25-1.1620.1400.3371.33×10-6
35-1.2330.1030.6453.73×10-5
508315-0.8790.1550.2023.91×10-7
25-1.1640.1940.3361.25×10-6
35-1.1700.1090.3225.96×10-5
表5  3种铝合金在pH8.3的不同温度模拟海水中的极化曲线拟合参数
图6  3种铝合金在pH8.3不同温度模拟海水溶液Nyquist谱
Al-alloyT / ℃Rs / Ω·cm2R1 / Ω·cm2C1 / F·cm-2n1
9C34154.37484859.051×10-60.9306
253.37886899.012×10-60.9375
351.80810271.297×10-50.8597
9C37154.05285778.955×10-60.9312
252.787147806.406×10-60.9624
351.34953618.826×10-60.9166
5083154.882109707.224×10-60.9472
253.751179205.601×10-60.9647
352.28319191.305×10-50.9022
表6  3种铝合金在pH8.3的不同温度模拟海水溶液中等效电路元件拟合结果
图7  3种铝合金在25 ℃不同pH值的模拟海水溶液中的极化曲线
Al-alloypHEcorr / VCathodic tafel slope / V·dec-1Anodic tafel slope / V·dec-1Icorr / A·cm-2
9C345.0-0.6350.4530.1022.73×10-6
7.0-0.6280.3690.1824.53×10-7
8.3-1.2060.1450.2173.16×10-6
9C375.0-0.6410.2590.0562.17×10-6
7.0-0.6370.2520.0203.46×10-8
8.3-1.1620.1400.3371.33×10-6
50835.0-0.6950.2170.0191.29×10-6
7.0-0.6300.2370.0967.54×10-7
8.3-1.1640.1940.3361.25×10-6
表7  3种铝合金在不同pH的模拟海水溶液中极化曲线拟合电化学参数
图8  3种铝合金在25 ℃不同pH模拟海水溶液中的Nyquist谱
图9  3种铝合金在不同pH模拟海水溶液中阻抗图谱对应的等效电路[25]
Al-alloypHRs / Ω·cm2R1 / Ω·cm2C1 / F·cm-2n1Lo / H·cm2W / Ω-1·cm2
9C345.02.52151201.229×10-50.8186---0.392×10-3
7.03.492334705.567×10-60.95357.575×107---
8.33.3786899.012×10-60.9375------
9C375.01.24171208.381×10-60.86924.503×105---
7.03.583147505.362×10-60.96511.043×107---
8.32.79147806.406×10-60.9624------
50835.02.21185406.528×10-60.90454.316×105---
7.03.792157606.141×10-60.93958.596×107---
8.33.75179205.601×10-60.9647------
表8  3种铝合金在25 ℃不同pH值的模拟海水溶液中的等效电路元件拟合结果
1 Duan L Q. Study on the green sealing methods for aluminum alloy anodic oxide film [D]. Beijing: Beijing University of Chemical Technology, 2010
1 段立清. 铝合金阳极氧化膜的稀土封闭技术的研究 [D]. 北京: 北京化工大学, 2010
2 Li Y D, Liu X H, Zhang X L, et al. An review of semi-solid near-net forming in wrought aluminum alloy [J]. Spec. Cast. Nonferr. Alloys, 2014, 34: 471
2 李元东, 刘兴海, 张心龙等. 变形铝合金半固态近净成形研究进展 [J]. 特种铸造及有色合金, 2014, 34: 471
3 Wang B. The Research on compaction mechanism of 6061 [D]. Wuhan: Wuhan University of Technology, 2018
3 王斌. 6061铝合金粉末压制机理研究 [D]. 武汉: 武汉理工大学, 2018
4 Qu H, Tang H G, Yuan X D, et al. A series of high performance aluminium alloys prepared by powder metallurgy [J]. J. Appliance Sci. Technol., 2016, (): 223
4 曲华, 汤华国, 袁迅道等. 粉末冶金技术制备的系列高性能铝合金 [J]. 家电科技, 2016, (): 223
5 Zhang W L. The influence of powder metallurgy process on the properties of preparation process materials [J]. Adhesion, 2019, 40: 41
5 张万良. 粉末冶金工艺对制备工艺材料性能的影响 [J]. 粘接, 2019, 40: 41
6 Wang J T, Guo Y L, Jin T. Corrosion behavior of Q235A-Z35 steel under 3.5%NaCl salt spray condition [J]. Mater. Prot., 2020, 53(4): 89
6 王建涛, 郭云龙, 金涛. 3.5%NaCl盐雾条件下Q235A-Z35钢的腐蚀行为研究 [J]. 材料保护, 2020, 53(4): 89
7 Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 99
7 曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 99
8 Chen Y L, Wang Z F, Bian G X, et al. Equivalent conversion of galvanic corrosion of typical aluminum-titanium alloy in NaCl solution with different concentrations [J]. Acta Aeronaut. Astronaut. Sin., 2017, 38: 260
8 陈跃良, 王哲夫, 卞贵学等. 不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系 [J]. 航空学报, 2017, 38: 260
9 Tian J Q. The electrochemical corrosion behavior of tungsten-aluminum (W-Al) alloy in NaCl solution [D]. Qingdao: Ocean University of China, 2013
9 田继强. 钨铝合金在NaCI溶液中的电化学腐蚀行为研究 [D]. 青岛: 中国海洋大学, 2013
10 Shao H B, Zhang J Q, Wang J M, et al. EIS analysis on the anodic dissolution process of pure aluminum in an alkaline solution [J]. Acta Phys. Chim. Sin., 2003, 19: 372
10 邵海波, 张鉴清, 王建明等. 纯铝在强碱溶液中阳极溶解的电化学阻抗谱解析 [J]. 物理化学学报, 2003, 19: 372
11 Real S, Urquidi-MaCdonald M, MaCdonald D D. Evaluation of alloy anodes for aluminum-air batteries [J]. Cheminform, 1988, 20: 2410
12 Wang J B. Corrosion and electrochemical behavior of aluminum in alkaline media [D]. Hangzhou: Zhejiang University, 2008
12 王俊波. 铝在碱性介质中的腐蚀与电化学行为 [D]. 杭州: 浙江大学, 2008
13 Liu Y Q, Li G M, Chen S, et al. Influences of copper ions and potential on cathodic protection behaviors of aluminum alloy 5083 [J]. Mater. Prot., 2017, 50(5): 88
13 刘亚强, 李国明, 陈珊等. 铜离子及电位对5083铝合金阴极保护行为的影响 [J]. 材料保护, 2017, 50(5): 88
14 Harrington S P, Devine T M. Relation between the semiconducting properties of a passive film and reduction reaction rates [J]. J. Electrochem. Soc., 2009, 156(4): C154
15 Song W H. The study on the dependence of corrosion process of magnesium anodic films on pH [D]. Chongqing: Chongqing University, 2012
15 宋卫华. 镁合金阳极氧化膜的腐蚀过程随pH变化的研究 [D]. 重庆: 重庆大学, 2012
16 Zhao X H. Study of electrochemical impedance spectroscopy on anodized aluminum alloys [D]. Beijing: Beijing University of Chemical Technology, 2016
16 赵旭辉. 铝阳极氧化膜的电化学阻抗特征研究 [D]. 北京: 北京化工大学, 2016
17 Lv Y L. Steam turbine rotor thermal embrittlement detection method based-on electrochemical impedance spectroscopy [D]. Beijing: North China Electric Power University (Beijing), 2016
17 吕亚玲. 基于电化学阻抗谱的汽轮机转子钢热脆化检测方法研究 [D]. 北京: 华北电力大学 (北京), 2016
18 Hu B. The corrosion inhibition of rare passivation and the corrosion behavior of 7075 aluminum alloy in alkaline solution with NaCl [D]. Xining: Qinghai Normal University, 2014
18 胡博. 7075型铝合金在碱性NaCl介质中的腐蚀行为及稀土钝化缓蚀作用 [D]. 西宁: 青海师范大学, 2014
19 Hu B, Wang J C, Liu Y, et al. The corrosion behavior of 7075 al alloy in alkaline NaCl [J]. Mater. Prot., 2014, 47(3): 23
19 胡博, 王建朝, 刘影等. 7075型铝合金在含NaOH碱性NaCl溶液中的腐蚀行为 [J]. 材料保护, 2014, 47(3): 23
20 Sheng H, Dong C F, Xiao K, et al. Effect of pH on electrochemical behavior of 2024-T351 aluminium Alloy in NaCl solution [J]. Corros. Prot., 2013, 34: 107
20 生海, 董超芳, 肖葵等. pH值对2024-T351铝合金在NaCl溶液中电化学行为的影响 [J]. 腐蚀与防护, 2013, 34: 107
21 Chen Y L, Wang A D, Bian G X, et al. Study on electrochemical behavior of 2024-T3 aluminum alloy in different acidic aqueous solutions [J]. Failure Anal. Prev., 2017, 12: 78
21 陈跃良, 王安东, 卞贵学等. 2024-T3铝合金在不同酸性水溶液中的电化学行为 [J]. 失效分析与预防, 2017, 12: 78
22 Moon S M, Pyun S I. Faradaic reactions and their effects on dissolution of the natural oxide film on pure aluminum during cathodic polarization in aqueous solutions [J]. Corrosion, 1998, 54: 546
23 Cao C N, Wang J, Lin H C. Effect of Cl- ion on the impedance of passive-film-covered electrodes [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 261
23 曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗频谱的影响 [J]. 中国腐蚀与防护学报, 1989, 9: 261
24 Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
24 马景灵, 文九巴, 卢现稳等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373
25 An B G, Zhang X Y, Song S Z, et al. A study of electrochemical impedance spectrum for corrosion behavior of LY12 aluminum alloy in simulated acid rain [J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 167
25 安百刚, 张学元, 宋诗哲等. LY12铝合金在模拟酸雨溶液中的阻抗谱研究 [J]. 中国腐蚀与防护学报, 2003, 23(3): 167
[1] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[2] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[3] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[4] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[5] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[6] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[7] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[8] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[9] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[10] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[11] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[12] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[13] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[14] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[15] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.