Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 757-764    DOI: 10.11902/1005.4537.2020.152
  综合评述 本期目录 | 过刊浏览 |
培养基对微生物腐蚀的影响
吕美英, 李振欣, 杜敏(), 万紫轩
中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Effect of Culture Medium on Microbiologically Influenced Corrosion
LV Meiying, LI Zhenxin, DU Min(), WAN Zixuan
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(661 KB)   HTML
摘要: 

针对培养基对微生物及其腐蚀行为的影响进行了详细论述。首先,对不同的培养基类型进行了分类,并归纳了主要营养元素的常见来源及其生理功能。同时,对常见腐蚀菌的培养基种类进行了简单概述。然后,着重探讨了培养基中不同营养组分 (如碳源、氮源以及无机盐组分PO43-、SO42-、Cl-、Na+、K+、Ca2+和Fe2+) 对细菌生长特性以及腐蚀过程的影响。最后,展望了优化培养基组成对探究微生物腐蚀机理的重要性。

关键词 微生物腐蚀培养基碳源氮源无机盐生长特性    
Abstract

The influence of culture medium on the growth characteristics of microorganisms and their behavior in the relevant corrosion process of materials at home and abroad was introduced in detail. First, the different types of culture media were classified. The common sources and physiological functions of the main nutrient elements were summarized. The culture media for common corrosive bacteria were also briefly described. Then, the effect of different nutrient components (such as carbon source, nitrogen source and inorganic salt components, e.g., PO43-, SO42-, Cl-, Na+, K+, Ca2+ and Fe2+) on the growth characteristics and corrosion process of bacteria was emphatically discussed. It is finally prospected that the importance of compositional optimization of culture media for the clarification of the relevant mechanism of bacteria influenced corrosion.

Key wordsmicrobiologically influenced corrosion    culture medium    carbon source    nitrogen source    inorganic salt    growth characteristic
收稿日期: 2020-08-18     
ZTFLH:  Q939.98  
基金资助:国家自然科学基金(51871204)
通讯作者: 杜敏     E-mail: ssdm99@ouc.edu.cn
Corresponding author: DU Min     E-mail: ssdm99@ouc.edu.cn
作者简介: 吕美英,女,1993年生,博士生

引用本文:

吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
Meiying LV, Zhenxin LI, Min DU, Zixuan WAN. Effect of Culture Medium on Microbiologically Influenced Corrosion. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 757-764.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.152      或      https://www.jcscp.org/CN/Y2021/V41/I6/757

Nutrient elementCommon sourcePhysiological function
CGlucose, sucrose, starch, beef extract, etc.It constitutes the cellular material of microorganisms, the skeleton of organic macromolecules, and provides energy for life activities
NYeast extract, beef extract, peptone, urea, ammonium salt, etc.It is the main element that constitutes proteins, nucleic acids, etc. In addition, ammonium and nitrate can also be used as energy sources for some bacteria
PKH2PO4, K2HPO4It is the key component of nucleic acid, nuclear protein and many coenzymes; Moreover, phosphate is an important buffer in cells
S(NH4)2SO4, MgSO4It is the component of sulfur-containing amino acids (cystine, cysteine, methionine, etc.) and sulfur-containing vitamins (biotin, thiamine, etc.); Sulfur and sulfides are also sources of energy for some autotrophic microorganisms
KKH2PO4, K2HPO4It is the cofactor of some enzymes (fructokinase, phosphopyruvate transphosphatase, etc.); It is also involved in the composition of the intracellular material transport system, and regulates membrane permeability, potential difference, and osmotic pressure
NaNaCl, NaNO3It can maintain osmotic pressure; It is essential for some bacteria and cyanobacteria
CaCa(NO3)2, CaCl2It is the stabilizer of some extracellular enzymes and the cofactor of proteases; It can also regulate the colloidal state in cells and reduce the permeability of the cell membrane
MgMgSO4It is the cofactor of nitrogenase and the component of chlorophyll; It can also stabilize ribosomes and cytoplasmic membranes
FeFeSO4It can constitute cytochrome, chlorophyll and some enzymes involved in the electron transfer process
表1  主要营养元素的来源与功能
Culture mediumKH2PO4K2HPO4NH4ClCaCl2·2H2OCaCl2·6H2OCaSO4Na2SO4FeSO4·7H2OMgSO4·7H2OSodium lactateYeast extractSodium citrate(NH4)2FeSO4·6H2O
PB0.5---1.00.06------4.50.0040.066.01.00.3---
PC---0.51.0---0.06---2.0---0.066.01.00.3---
MB---0.051.0------1.0------4.13.51.05.01.38
表2  SRB培养基组成
Culture mediumK2HPO4NaNO3CaCl2MgSO4·7H2ONH4NO3(g/L)(NH4)2SO4FeSO4·7H2OAmmonium ferric citrateKClCa(NO3)2
Winogradsky0.50.50.20.50.5------6.0------
9k0.05------0.50.15---------0.050.01
Bushnell Hass0.5------0.5---3.044.22---0.10.01
表3  IOB培养基组成
Culture mediumBeef extractYeast extractNaClPeptoneKNO3
NB3.0---5.010.0---
LB-NO3---5.05.010.010.0
表4  NRB培养基组成
1 Lv M Y, Du M. A review: Microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. Biotechnol., 2018, 17: 431
2 Lv M Y, Du M, Li X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria [J]. J. Mater. Res. Technol., 2019, 8: 4066
3 Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
3 刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
4 Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
4 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
5 Li H B, Xu D K, Li Y C, et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris [J]. PLoS One, 2015, 10: e0136183
6 Dec W, Mosiałek M, Socha R P, et al. The effect of sulphate-reducing bacteria biofilm on passivity and development of pitting on 2205 duplex stainless steel [J]. Electrochim. Acta, 2016, 212: 225
7 Duan J Z, Wu S, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
8 Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
9 Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
10 Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
11 Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G, et al. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants [J]. Biodegradation, 2012, 23: 69
12 Halim A, Watkin E, Gubner R. Short term corrosion monitoring of carbon steel by bio-competitive exclusion of thermophilic sulphate reducing bacteria and nitrate reducing bacteria [J]. Electrochim. Acta, 2012, 77: 348
13 Pu Y N, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
14 Sachan R, Singh A K. Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2) [J]. Constr. Build. Mater., 2020, 256: 119438
15 Nan L, Xu D K, Gu T Y, et al. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli [J]. Mater. Sci. Eng., 2015, 48C: 228
16 Pillay C, Lin J. The impact of additional nitrates in mild steel corrosion in a seawater/sediment system [J]. Corros. Sci., 2014, 80: 416
17 Tian X, Liao Q, Dang N, et al. Effect of nutrient and hydrodynamic conditions on growth characteristics of photosynthetic bacterial biofilm [J]. China Biotechnol., 2009, 29(4): 67
17 田鑫, 廖强, 党楠等. 营养及水力条件影响光合细菌生物膜生长特性实验 [J]. 中国生物工程杂志, 2009, 29(4): 67
18 Chai K, Luo Q, Wu J. Effect of Pseudomonas on electrochemical corrosion behavior of S45C steel in seawater and a culture medium [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 481
18 柴柯, 罗琦, 吴进怡. 海水及培养基中假单胞菌对45钢电化学腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 481
19 Zhou D Q. Microbiology Course [M]. 3rd ed. Beijing: Higher Education Press, 2011
19 周德庆. 微生物学教程 [M]. 3版. 北京: 高等教育出版社, 2011
20 Yi W J, Qu D, Zhu C, et al. Fe(Ⅲ) reduction characteristics of three iron reducers using different carbon sources [J]. J. Northwest A&F Univ. (Nat. Sci. Ed.), 2009, 37(2): 181
20 易维洁, 曲东, 朱超等. 3株铁还原细菌利用不同碳源的还原特征分析 [J]. 西北农林科技大学学报 (自然科学版), 2009, 37(2): 181
21 Tong L, Li X L, Wu J N, et al. Isolation of an iron-reducing bacteria strain and its carbon source utilization [J]. J. Hefei Univ. Technol., 2016, 39: 536
21 童磊, 李湘凌, 吴纪南等. 一株铁还原菌的分离及其碳源利用特性研究 [J]. 合肥工业大学学报 (自然科学版), 2016, 39: 536
22 Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
23 Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
24 Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
25 Zhang Y, Zhang C Z, Gou J X, et al. Study of the effects of culture condition on the growth of Thiobacillus ferroxidans and the jarosite precipitates [J]. J. Saf. Environ., 2012, 12: 28
25 张英, 张承中, 苟菊香等. 营养条件对氧化亚铁硫杆菌生长及其铁沉淀的影响研究 [J]. 安全与环境学报, 2012, 12(2): 28
26 Zhang X, Wang S L, Ding Y, et al. Effect of nutrients on growth and desulphurization with thiobacillus ferrooxidans [J]. J. China Univ. Min. Technol., 2005, 34: 725
26 张兴, 王少丽, 丁玉等. 营养条件对氧化亚铁硫杆菌生长和脱硫的影响 [J]. 中国矿业大学学报, 2005, 34: 725
27 Gu F Y. The study on nitrogen source of sulfate reducing bacteria culture medium and the treatment conditions of acid mine drainage [D]. Changchun: Jilin University, 2017
27 顾风云. SRB培养基氮源及其处理酸性矿山废水条件研究 [D]. 长春: 吉林大学, 2017
28 Madigan M T, Martinko J M, Dunlap P V, et al. Brock Biology of Microorganisms[M]. 12th ed. New Jersey: Prentice-Hall, 2008
29 Van Der Kooij D, Visser A, Hijnen W A M. Determining the concentration of easily assimilable organic carbon in drinking water [J]. J. Am. Water Works Ass., 1982, 74: 540
30 Lehtola M J, Miettinen I T, Martikainen P J. Biofilm formation in drinking water affected by low concentrations of phosphorus [J]. Can. J. Microbiol., 2002, 48: 494
31 Sathasivan A, Ohgaki S, Yamamoto K, et al. Role of inorganic phosphorus in controlling regrowth in water distribution system [J]. Water Sci. Technol., 1997, 35: 37
32 Rompré A, Prévost M, Coallier J, et al. Impacts of implementing a corrosion control strategy on biofilm growth [J]. Water Sci. Technol., 2000, 41: 287
33 Jiang D L, Zhang X J. Limitation of phosphorus to microbial growth in drinking water [J]. China Water Wastewater, 2004, 20(1): 26
33 姜登岭, 张晓健. 饮用水中磷对微生物生长的限制作用 [J]. 中国给水排水, 2004, 20(1): 26
34 Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors to SRB growth and corrosion [J]. Petrochem. Ind. Appl., 2015, 34(1): 13
34 孟章进, 吴伟林, 祁建杭等. 井筒环境因素对SRB生长及腐蚀影响分析 [J]. 石油化工应用, 2015, 34(1): 13
35 Lyu M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
35 吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
36 Fang S J, Liu Y H, Wang Q, et al. Influence of SRB on corrosion of AZ91 magnesium alloy in solution containing chlorine ions [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2008, 36(7): 92
36 方世杰, 刘耀辉, 王强等. SRB对AZ91镁合金在含氯离子溶液中腐蚀的影响 [J]. 华南理工大学学报 (自然科学版), 2008, 36(7): 92
37 Zhang X L, Chen Z X, Liu H H, et al. Effect of environment factors on the growth of sulfate-reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 224
37 张小里, 陈志昕, 刘海洪等. 环境因素对硫酸盐还原菌生长的影响 [J]. 中国腐蚀与防护学报, 2000, 20: 224
38 Webster B J, Newman R C. Producing Rapid Sulfate-Reducing Bacteria (SRB)-Influenced Corrosion in the Laboratory [M]. West Conshohocken: ASTM International, 1994
39 Xu C M, Zhang Y H, Cheng G X, et al. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria [J]. Mater. Charact., 2008, 59: 245
40 Yang W L. The interaction between amino acids, salts ions and biological membrane revealed by sum frequency generation [D]. Hefei: University of Science and Technology of China, 2015
40 杨未来. 氨基酸和盐离子与生物膜作用的和频光谱研究 [D]. 合肥: 中国科学技术大学, 2015
41 López-Moreno A, Sepúlveda-Sánchez J D, Guzman E M M A, et al. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: Influence of calcium on EPS production and biofilm formation by these isolates [J]. Biofouling, 2014, 30: 547
42 De Kerchove A J, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films [J]. Langmuir, 2008, 24: 3392
43 Geesey G G, Wigglesworth-Cooksey B, Cooksey K E. Influence of calcium and other cations on surface adhesion of bacteria and diatoms: A review [J]. Biofouling, 2000, 15: 195
44 Liu H F, Wang M F, Xu L M, et al. The role of Ca2+ on the microbiologically induced corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 45
44 刘宏芳, 汪梅芳, 许立铭等. 钙离子对碳钢微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2004, 24: 45
45 Zhang X L, Liu H H, Chen K X, et al. The study of growing regulation of sulfate-reducing bacteria [J]. J. Northwest Univ. (Nat. Sci. Ed.), 1999, 29: 397
45 张小里, 刘海洪, 陈开勋等. 硫酸盐还原菌生长规律的研究 [J]. 西北大学学报 (自然科学版), 1999, 29: 397
46 Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
47 Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
48 Wan X S, Wan H Q, Zhu J H. Selection and Study of the Growth Characterization of the Sulfate-Reducing Bacteria [J]. Chongqing Environ. Sci., 2003, 25(3): 26
48 万雪松, 万海清, 朱家骅. 硫酸厂淤泥中SRB的选育及特性研究 [J]. 重庆环境科学, 2003, 25(3): 26
49 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
50 Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
51 Finkenstadt V L, Côté G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
52 Wu Q, Li Y, Li Y N, et al. Influence of iron-oxidizing bacteria in reclaimed water used for recycle cooling water on corrosion behavior of carbon steel [J]. J. Tianjin Polytechnic Univ., 2014, 33(4): 40
52 吴卿, 李云, 李亚男等. 再生水用于循环冷却水中铁细菌对碳钢腐蚀的影响 [J]. 天津工业大学学报, 2014, 33(4): 40
[1] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[2] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[3] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[4] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[5] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[6] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[7] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[8] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[11] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[12] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[13] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[14] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[15] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.