Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 233-238    DOI: 10.11902/1005.4537.2014.080
  研究报告 本期目录 | 过刊浏览 |
两种不锈钢在模拟消声器环境中的电偶腐蚀行为
魏强,李谋成(),沈嘉年
Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments
Qiang WEI,Moucheng LI(),Jianian SHEN
Institute of Materials, Shanghai University, Shanghai 200072, China
全文: PDF(1963 KB)   HTML
摘要: 

采用氧化/冷凝液浸泡循环实验方法模拟汽车消声器内部环境,研究了409和304两种不锈钢在冷凝液中的电偶腐蚀行为。结果表明,无氧化作用时两种不锈钢间电偶腐蚀效应较弱,304钢对409钢的加速腐蚀作用很小。循环实验过程中,偶合电位较低时偶合电流密度往往较大。热氧化将明显增大两种不锈钢发生电偶腐蚀的倾向性,但氧化温度为250 ℃时稳定偶合电流密度较小、电偶腐蚀效应不显著,而氧化温度为400 ℃时409钢在循环过程中将发生局部腐蚀,呈现出较大的偶合电流密度,电偶腐蚀效应较强。

关键词 汽车排气系统消声器不锈钢电偶腐蚀冷凝液腐蚀    
Abstract

The cyclic method of hot air oxidation/immersion in condensates was adopted to simulate the internal service conditions of automotive mufflers. The galvanic corrosion between type 409 and 304 stainless steels was investigated during the condensates immersion by using electrochemical measurements. The results of coupling potential and current indicate that the galvanic corrosion effect is very weak between these two steels without suffered from hot air oxidation. This means that 304 stainless steel can hardly accelerate the corrosion of 409 stainless steel as they contact directly in the condensate solutions. During the cyclic tests, the two steels show relatively higher values for the coupling current in the low coupling potential cases. Hot air oxidation will enhance the galvanic corrosion tendency between the two steels. However, they show small coupling current densities after cyclic oxidation at 250 ℃, with weak galvanic corrosion effect between them. Whereas they display large coupling current densities (i.e. strong galvanic corrosion effect) with the occurrence of localized corrosion after cyclic oxidation at 400 ℃.

Key wordsautomotive exhaust system    muffler    stainless steel    galvanic corrosion    condensate corrosion
    
基金资助:国家自然科学基金项目 (51134010) 资助

引用本文:

魏强,李谋成,沈嘉年. 两种不锈钢在模拟消声器环境中的电偶腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(3): 233-238.
Qiang WEI, Moucheng LI, Jianian SHEN. Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 233-238.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.080      或      https://www.jcscp.org/CN/Y2015/V35/I3/233

Steel Cr Ni Mn Si C P S N Cu Ti Fe
304 18.11 8.19 1.06 0.43 0.05 0.025 0.001 0.039 0.55 --- Bal.
409 11.46 0.09 0.54 0.45 0.007 0.025 0.002 --- 0.02 0.19 Bal.
表1  不锈钢试样的化学组成
图1  409和304不锈钢在冷凝液中的腐蚀电位-时间曲线
图2  409钢和304钢的偶合电位与偶合电流密度随时间的变化曲线
图3  不同氧化温度条件下两种试样的腐蚀电位随氧化/浸泡实验循环周期的演变曲线
图4  两种钢在250 ℃氧化/浸泡循环实验不同周期时的典型偶合电位和电流密度曲线
图5  两种钢在400 ℃氧化/浸泡实验循环不同周期时的典型偶合电位和电流密度曲线
图6  两种氧化温度条件下偶合电位和电流密度随氧化/浸泡实验循环周期的演变曲线
图7  未偶合与偶合的409不锈钢试样经30次氧化/浸泡循环实验后表面的SEM像
[1] Inoue Y, Kikuchi M. Present and future trends of stainless steel for automotive exhaust system[J]. Nippon Steel Tech. Rep., 2003, 88: 62
[2] Douthett J. Automotive exhaust system corrosion [A]. In: Cramer S D, Covino B S, eds. ASM Handbook Volume 13C, Corrosion: Environments and Industries [C]. Ohio: ASM International, 2006, 519
[3] Ruan W H, Wang S D, Li M C, et al. Corrosion behavior of 409 ferritic stainless steel in condensate solution of automotive mufflers[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 301 (阮伟慧, 王士栋, 李谋成等. 409不锈钢在消声器冷凝液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24(4): 301)
[4] Li M C, Wang S D, Ma R Y, et al. Effect of cyclic oxidation on electrochemical corrosion of type 409 stainless steel in the simulated muffler condensates[J]. J. Solid State Electrochem., 2012, 16: 3059
[5] Bi H Y, Li X, Wu Y. Development of ferritic stainless steel for low temperature parts in automotive exhaust systems[J]. Baosteel Technol., 2007, 4: 1 (毕洪运, 李鑫, 武勇.汽车尾气排放系统低温端用铁素体不锈钢开发[J]. 宝钢技术, 2007, 4: 1)
[6] Ujiro T, Kitazawa M, Togashi F. Corrosion of muffler materials in automotive exhaust gas condensates[J]. Mater. Perform., 1994, 33: 49
[7] Doche M L, Hihn J Y, Mandroyan A, et al. A novel accelerated corrosion test for exhaust systems by means of power ultrasound[J]. Corros. Sci., 2006, 48: 4080
[8] Lee S U, Ahn J C, Kim D H, et al. Influence of chloride and bromide anions on localized corrosion of 15%Cr ferritic stainless steel[J]. Mater. Sci. Eng., 2006, A434: 155
[9] Huttunen-Saarivirta E, Kuokkala V T, Pohjanne P. Thermally grown oxide films and corrosion performance of ferritic stainless steels under simulated exhaust gas condensate conditions[J]. Corros. Sci., 2014, 87: 344
[10] Wang S D, Han P H, Ma R Y, et al. Effect of urea on condensates corrosion of stainless steels in simulated automotive exhaust environments[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 41 (王士栋, 韩沛洪, 马荣耀等. 尿素对模拟汽车废气环境中不锈钢冷凝液腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 41)
[11] Yasir M, Mori G, Wieser H, et al. Study of sensitization and different heating cycles on stainless steels used for automotive exhaust components[J]. Mater. Corros., 2013, 63(9): 763
[12] Chang S, Jun J H. Corrosion resistance of automotive exhaust materials[J]. J. Mater. Sci. Lett., 1999, 18: 419
[13] Kim J K, Kim Y H, Lee B H, et al. New findings on intergranular corrosion mechanism of stabilized stainless steels[J]. Electrochim. Acta, 2011, 56: 1701
[14] Han P H, Xu Z H, Wang C P, et al. Condensate corrosion behavior of type 409 stainless steel in simulated automotive muffler environments[J]. Int. J. Electrochem. Sci., 2014, 9: 3784
[15] Li M C, Zhang H, Huang R F, et al. Effect of SO2 on oxidation of type 409 stainless steel and its implication on condensate corrosion in automotive mufflers[J]. Corros. Sci., 2014, 80: 96
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[5] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[9] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[10] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[11] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[13] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[14] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.