Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 182-190    DOI: 10.11902/1005.4537.2019.019
  研究报告 本期目录 | 过刊浏览 |
FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响
秦越强1,2, 左勇1,2,3(), 申淼1,3
1 中国科学院上海应用物理研究所 上海 201800
2 中国科学院大学 北京 100049
3 中国科学院洁净能源创新研究院 大连 116023
Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System
QIN Yueqiang1,2, ZUO Yong1,2,3(), SHEN Miao1,3
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
全文: PDF(6328 KB)   HTML
摘要: 

研究了316L不锈钢在FLiNaK-CrF3/CrF2氧化还原体系中的腐蚀行为,通过改变LiF-NaF-KF(FLiNaK) 熔盐中[Cr3+]/[Cr2+]的浓度比值来调节熔盐电位,并用一种修正的Tafel方法测得316L不锈钢在不同电位下的氧化还原缓冲熔盐中的腐蚀电流密度。结果表明,实验温度为873和823 K时,使熔盐电位分别低于-0.741和-0.703 V,能有效抑制316L不锈钢在FLiNaK熔盐中的腐蚀。并通过传统的浸泡方法验证了这一结论。氧化还原缓冲熔盐还有另一重要特性,不同的金属或合金材料在熔盐中有着几乎一致的电位,这是使用修正的Tafel方法测得316L不锈钢在缓冲熔盐中的腐蚀电流密度的重要前提。

关键词 氧化还原缓冲熔盐熔盐电位腐蚀电流密度腐蚀抑制316L不锈钢    
Abstract

The corrosion behavior of 316L stainless steel (316LSS) in FLiNaK-CrF3/CrF2 redox system has been studied in this paper. The corrosion rate of 316LSS in molten salt was found to be dependent on the salt potential, which can be adjusted by varying the ratio of the ion pairs ([Cr3+]/[Cr2+]) in the molten salt. When the salt potential was controlled below -0.741 V vs Ni/NiF2 at 873 K or -0.703 V vs Ni/NiF2 at 823 K, the corrosion of 316LSS in the molten salt can be effectively inhibited. This conclusion was verified by the immersion corrosion tests. Another important and interesting feature of the redox buffering molten salt is that different metal- or alloy-materials have almost identical potential in the salt. This effect is significant for applying the modified Tafel method in the redox buffering system.

Key wordsredox buffering molten salt    molten salt potential    corrosion current density    corrosion inhibition    316L stainless steel
收稿日期: 2019-01-23     
ZTFLH:  O646.6  
基金资助:中国科学院战略先导专项(XDA02020400);中国科学院战略先导专项(XDA21000000)
通讯作者: 左勇     E-mail: zuoyong@sinap.ac.cn
Corresponding author: ZUO Yong     E-mail: zuoyong@sinap.ac.cn
作者简介: 秦越强,男,1992年生,硕士生

引用本文:

秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
Yueqiang QIN, Yong ZUO, Miao SHEN. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 182-190.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.019      或      https://www.jcscp.org/CN/Y2020/V40/I2/182

图1  实验装置简图
图2  具有离子导通功能的热压氮化硼管参比电极
图3  经典Tafel方法在非氧化还原缓冲体系中应用原理图
图4  修正的Tafel方法在氧化还原缓冲体系中应用原理图
图5  316L不锈钢和Ag电极在氧化还原缓冲体系 (FLiNaK-CrF3/CrF2) 中的阴极极化曲线
图6  Ag在873 K下纯FliNaK熔盐中的循环伏安曲线 (扫描速率100 mV/s)
图7  Ag在873 K下FLiNaK-CrF3/CrF2体系中的循环伏安曲线 (扫描速率100 mV/s)
图8  316L不锈钢在873 K下FLiNaK-CrF3/CrF2体系中的循环伏安曲线 (扫描速率: 100 mV/s)
Temperature / KEp / VAverage / VRT/nFE1/2 (E?) / V
873-0.682---------
-0.667-0.6720.075-0.755
-0.666---------
823-0.669---------
-0.659-0.6640.071-0.743
-0.665---------
表1  通过循环伏安法获得Cr3+/Cr2+的峰电势EP,并计算出半波电势E1/2
图9  在873 K时随着CrF2逐步添加到含有1000 μg·g-1 CrF3的FLiNaK熔盐中,Ag和316L不锈钢上开路电位的变化
图10  纯Fe丝、316L不锈钢和Hastelloy C-276 (HC276) 在873 K下含有500 μg·g-1 CrF3的FLiNaK中的阳极极化曲线
图11  Ag丝、纯Fe丝、316L不锈钢和Hastelloy C-276 (HC276) 在873 K下FLiNaK-CrF3/CrF2熔盐体系中的阳极极化曲线
图12  添加了1000 μg·g-1 CrF3的FLiNaK盐及添加了1000 μg·g-1 CrF3和800 μg·g-1 CrF2的FLiNaK盐冷却后的实物图
图13  316L不锈钢在873和823 K下纯FLiNaK熔盐中的阳极极化曲线
图14  316L不锈钢在873和823 K、不同熔盐电位条件下的腐蚀电流密度
图15  在熔盐中浸泡100 h后的316L不锈钢丝截面SEM像
图16  在不同的温度和电位下316L不锈钢和Ag电极在FLiNaK-CrF3/CrF2氧化还原缓冲体系中的阳极极化曲线
图17  用修正的Tafel方法处理后获得的316L不锈钢和Ag电极在FLiNaK-CrF3/CrF2氧化还原缓冲体系中的阳极极化曲线
[1] Romatoski R R, Hu L W. Fluoride salt coolant properties for nuclear reactor applications: A review [J]. Ann. Nucl. Energy, 2017, 109: 635
[2] MacPherson H G. The molten salt reactor adventure [J]. Nucl. Sci. Eng., 1985, 90: 374
[3] Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-A review [J]. Appl. Energy, 2015, 146: 383
[4] Patel N S, Pavlík V, Boča M. High-temperature corrosion behavior of superalloys in molten salts-a review [J]. Crit. Rev. Solid State Mater. Sci., 2017, 42: 83
[5] McCoy H E, Beatty R L, Cook W H, et al. New developments in materials for molten-salt reactors [J]. Nucl. Appl. Technol., 1970, 8: 156
[6] Liu M, Zheng J Y, Lu Y L, et al. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques [J]. J. Nucl. Mater., 2013, 440: 124
[7] Fu C T, Wang Y L, Chu X W, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy [J]. J. Nucl. Mater., 2017, 497: 76
[8] Zhu Y S, Qiu J, Hou J, et al. Effects of SO42- ions on the corrosion of GH3535 weld joint in FLiNaK molten salt [J]. J. Nucl. Mater., 2017, 492: 122
[9] Wang Y L, Liu H J, Yu G J, et al. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K)F at 700 ℃ [J]. J. Fluor. Chem., 2015, 178: 14
[10] Sellers R S, Cheng W J, Kelleher B C, et al. Corrosion of 316L stainless steel alloy and hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite [J]. Nucl. Technol., 2014, 188: 192
[11] Maric M, Muránsky O, Karatchevtseva I, et al. The effect of cold-rolling on the microstructure and corrosion behaviour of 316L alloy in FLiNaK molten salt [J]. Corros. Sci., 2018, 142: 133
[12] Yin H Q, Qiu J, Liu H J, et al. Effect of CrF3 on the corrosion behaviour of Hastelloy-N and 316L stainless steel alloys in FLiNaK molten salt [J]. Corros. Sci., 2018, 131: 355
[13] Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
[13] (丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543)
[14] Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control [J]. Electrochim. Acta, 2015, 160: 209
[15] Guo S Q, Shay N, Wang Y F, et al. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept [J]. J. Nucl. Mater., 2017, 496: 197
[16] Zhang J S, Forsberg C W, Simpson M F, et al. Redox potential control in molten salt systems for corrosion mitigation [J]. Corros. Sci., 2018, 144: 44
[17] McCafferty E. Validation of corrosion rates measured by the Tafel extrapolation method [J]. Corros. Sci., 2005, 47: 3202
[18] Wang Y L, Wang Q, Liu H J, et al. Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K)F [J]. Corros. Sci., 2016, 103: 268
[19] Peng H, Shen H, Wang C Y, et al. Electrochemical investigation of the stable chromium species in molten FLINAK [J]. RSC Adv., 2015, 5: 76689
[20] Mirkin M V, Bard A J. Simple analysis of quasi-reversible steady-state voltammograms [J]. Anal. Chem., 1992, 64: 2293
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[3] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[4] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[5] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[6] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[7] 陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[8] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[9] 聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[10] 檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[11] 杜向前, 段继周, 翟晓凡, 栾鑫, 张杰, 侯保荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[12] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[13] 蒋穹,缪强,丁祥,魏小昕. 片状Al-Zn-Si合金粉的析氢行为与抑制剂研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 61-69.
[14] 彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[15] 刘彬,段继周,侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.