Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 227-232    DOI: 10.11902/1005.4537.2014.089
  本期目录 | 过刊浏览 |
温度对X80管线钢酸性红壤腐蚀行为的影响
杨霜1,2,唐囡3,闫茂成1(),赵康文2,孙成1,许进1,于长坤1
2. 沈阳理工大学环境与化学工程学院 沈阳 110016
3. 国网江西省电力科学研究院 南昌 330096
Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil
Shuang YANG1,2,Nan TANG3,Maocheng YAN1(),Kangwen ZHAO2,Cheng SUN1,Jin XU1,Changkun YU1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. College of Environment and Chemical Engineering, Shenyang Ligong University, Shenyang 110016, China
3. Electric Power Research Institute of Jiangxi Province, State Grid Corporation, Nanchang 330096, China
全文: PDF(841 KB)   HTML
摘要: 

使用电化学阻抗谱 (EIS) 研究X80管线钢在不同温度酸性红壤中的腐蚀行为,应用动力学和过渡态理论分析X80管线钢腐蚀过程的反应动力学特征。结果表明,X80钢在红壤中的EIS由高频区的土壤容抗弧和低频区的界面过程容抗弧组成。环境温度对X80钢红壤腐蚀影响显著:随温度的升高,土壤电阻和电荷转移电阻均呈减小趋势,腐蚀速率增大。反应动力学分析表明,X80钢在酸性红壤中的腐蚀是体系混乱度减小的吸热反应。

关键词 管线钢阴极保护酸性土壤EIS动力学分析    
Abstract

Corrosion of X80 pipeline steel in an acidic red soil collected from Yingtan area of Southeast China was studied in a temperature range 20~75 ℃ by electrochemical impedance spectroscopy (EIS). Theory concerning corrosion dynamics and transition state was applied to analyze the process and kinetics of the corrosion reaction. The results show that EIS of X80 steel in the red soil contains a capacitive arc related with soil at the high frequency region and a capacitive arc from the interface process at low frequency region. With increasing temperature, the soil resistivity and charge transfer resistance decrease, and the corrosion rate increases. Kinetics analysis shows that corrosion of X80 steel in the acidic red soil is an endothermic reaction system companied with decrease of disorder degree.

Key wordspipeline steel    cathodic protection    acidic soil    EIS    kinetic analysis
    
基金资助:国家自然科学基金重点项目(51131001),国家电网科技项目 (521820130014)和教育部留学回国人员科研启动基金项目资助

引用本文:

杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
Shuang YANG, Nan TANG, Maocheng YAN, Kangwen ZHAO, Cheng SUN, Jin XU, Changkun YU. Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 227-232.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.089      或      https://www.jcscp.org/CN/Y2015/V35/I3/227

图1  X80钢在各温度下酸性红壤中的EIS谱
图2  X80钢在红壤腐蚀过程中的EIS等效电路
图3  由图2中等效电路对X80钢EIS谱进行拟合的结果
Temperature Rs kΩcm2 Y0,s Scm-2s-n n1 Rct kΩcm2 Y0,dl Scm-2s-n n2
20 6.072 7.89×10-11 1 6.556 1.71×10-4 0.701
30 4.394 7.55×10-11 1 3.468 1.65×10-4 0.836
40 3.388 4.36×10-10 0.869 1.758 1.86×10-4 0.765
50 3.051 1.58×10-9 0.762 1.312 1.83×10-4 0.793
65 2.641 1.79×10-9 0.760 0.675 1.91×10-4 0.787
70 2.397 2.10×10-9 0.754 0.606 2.45×10-4 0.642
75 2.334 2.66×10-10 0.913 0.493 1.90×10-4 0.744
表1  EIS拟合得到的电化学参数
图4  电化学阻抗谱参数Rs与Rct随温度的变化
T / ℃ Ea kJmol-1 ΔG0 kJmol-1 ΔHa0 kJmol-1 ΔSa0 kJmol-1
20 38.95 65.45 36.52 ?0.0988
30 38.95 66.00 36.43 ?0.0976
40 38.95 66.32 36.35 ?0.0958
50 38.95 67.57 36.27 ?0.0969
65 38.95 68.71 36.14 ?0.0964
70 38.95 69.38 36.10 ?0.0970
75 38.95 69.75 36.06 ?0.0968
表2  X80钢红壤腐蚀过程中的反应活化能、活化自由能、活化焓及活化熵
图5  温度对腐蚀速率的影响及拟合Arrhenius曲线
图6  (Rct-1/T) 与1/ T的关系及过渡态曲线拟合结果
[1] Yan M C, Sun C, Xu J, et al. Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[2] Yan M C, Sun C, Xu J, et al. Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Ind. Eng. Chem. Res., 2014, 53(45): 17615
[3] Cao C N. Material Natural Environment Corrosion in China[M]. Beijing: Chemical Industry Press, 2005 (曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005)
[4] Yan M C, Wang J Q, Ke W, et al. Effectiveness of cathodic protection under simulated disbonded coating on pipelines[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 257 (闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27: 257)
[5] Yan M C, Wang J Q, Han E-H, et al. Characteristics and evolution of thin layer electrolyte on pipeline steel under cathodic protection shielding disbonded coating[J]. Acta Metall. Sin., 2014, 50(9): 1137 (闫茂成, 王俭秋, 韩恩厚等. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137)
[6] Yan M C, Wang J Q, Han E-H, et al. Local environment under simulated disbonded coating on steel pipelines in soil solution[J]. Corros. Sci., 2008, 50: 1331
[7] Cole I S, Marney D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils[J]. Corros. Sci., 2012, (56): 55
[8] Nie X H, Li X G, Du C W, et al. Temperature dependence of the electrochemical corrosion characteristics of carbon steel in a salty soil[J]. J. Appl. Electrochem., 2009, 39(2): 277
[9] Wang Y H, Wen J. Regularity of variation of corrosion of mild steel with climate[J]. Corros. Sci. Prot. Technol., 2000, 12(6): 359 (王永红, 文杰. 碳钢土壤腐蚀随季节变化规律[J]. 腐蚀科学与防护技术, 2000, 12(6): 359)
[10] Kim J G, Kim Y W. Cathodic protection criteria of thermally insulated pipeline buried in soil[J]. Corros. Sci., 2001, 43(11): 2011
[11] Zarrok H, Oudda H. Weight loss measurement and theoretical study of new pyridazine compound as corrosion inhibitor for C38 steel in hydrochloric acid solution[J]. Pharmacol. Chem., 2011, 3(6): 576
[12] Eyring H. The activated complex in chemical reactions[J]. J. Chem. Phys., 1935, 3: 107
[13] Evans M G, Polanyi M. Inertia and driving force of chemical reactions[J]. Trans. Faraday Soc., 1938, 34: 11
[14] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy (EIS)[J]. J. Chin. Soc.Corros.Prot., 2000, 20(2): 111 (李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2000, 20(2): 111)
[15] Cheng Y F, Steward F R. Corrosion of carbon steels in high-temperature water studied by electrochemical techniques[J]. Corros. Sci., 2004, 46(10): 2405
[1] 戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[2] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[3] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[4] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[5] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[7] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[8] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[9] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[10] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[11] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[12] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[13] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[14] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[15] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.