Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 80-86    DOI: 10.11902/1005.4537.2020.012
  研究报告 本期目录 | 过刊浏览 |
MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究
左勇1,2,3(), 曹明鹏1,3, 申淼1,2, 杨新梅1,2,3
1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院洁净能源创新研究院 大连 116023
3.中国科学院大学 北京 100049
Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl
ZUO Yong1,2,3(), CAO Mingpeng1,3, SHEN Miao1,2, YANG Xinmei1,2,3
1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(2318 KB)   HTML
摘要: 

通过电化学方法结合浸泡腐蚀测试考察了金属Mg对MgCl2-NaCl-KCl (MNKC) 熔盐的净化和腐蚀抑制作用。结果表明,金属Mg的加入量在500 μg·g-1以上时,316H不锈钢在600 ℃ MNKC熔盐中的腐蚀电位Ecorr<-0.80 V vs NiCl2/Ni,腐蚀电流密度Icorr<25 μA/cm2,线性极化电阻Rp>800 Ω·cm2,熔盐对316H不锈钢的腐蚀得到显著抑制。并对金属Mg对MNKC熔盐的净化和腐蚀抑制机理进行了探讨。

关键词 氯化物熔盐腐蚀控制316H不锈钢聚光太阳能发电站 (CSP)    
Abstract

The effect of Mg on purification of molten salts MgCl2-NaCl-KCl (MNKC) and corrosion behavior of 316H stainless steel in MNKC molten salts were investigated by means of immersion test and electrochemical means. Results indicated that the corrosion of 316H stainless steel in MNKC molten salts at 600 ℃ was well inhibited when the addition amount of Mg exceeds 500 μg·g-1, correspondingly, 316H stainless steel presents the free corrosion potential of Ecorr<-0.80 V vs NiCl2/Ni, corrosion current density of Icorr<25 μA/cm2, and linear polarization resistance of Rp>800 Ω·cm2. The purification and corrosion inhibition mechanism of Mg for the MNKC molten salts were discussed simultaneously.

Key wordschloride molten salt    corrosion mitigation    316H stainless steel    concentrated solar power (CSP)
收稿日期: 2020-01-17     
ZTFLH:  TG174  
基金资助:中国科学院战略性先导科技专项(XDA21000000)
通讯作者: 左勇     E-mail: zuoyong@sinap.ac.cn
Corresponding author: ZUO Yong     E-mail: zuoyong@sinap.ac.cn
作者简介: 左勇,男,1978年生,博士,副研究员

引用本文:

左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
Yong ZUO, Mingpeng CAO, Miao SHEN, Xinmei YANG. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 80-86.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.012      或      https://www.jcscp.org/CN/Y2021/V41/I1/80

图1  钨电极在600 ℃ MNKC熔盐体系中的循环伏安曲线
图2  316H不锈钢在600 ℃ MNKC熔盐体系的腐蚀电位随Mg添加量的变化曲线
图3  600 ℃下316H不锈钢在MNKC-Mg (0~1200 μg·g-1) 熔盐体系的极化曲线
图4  600 ℃下316H不锈钢在MNKC熔盐体系中的腐蚀电流密度随Mg添加量的变化曲线
图5  600 ℃下316H不锈钢在MNKC熔盐体系中的线性极化电阻随Mg添加量的变化曲线
图6  钨电极在600 ℃的MNKC-0.2%CrCl2熔盐体系中的循环伏安曲线
PeakStart point / VEnd point / VCorresponding reaction
A1-0.80-0.75

2Cr+O2--4e→Cr2O2+

Cr+O2--2e→CrO

A2-0.71-0.62Cr-2e→Cr2+
A3-0.58-0.49

2Cr2++3O2--2e→Cr2O3

Cr2O2++2O2--2e→Cr2O3

2CrO+O2--2e→Cr2O3

A4-0.46-0.43Cr2+-e→Cr3+
C1-0.80-0.87

Cr2O2++4e→2Cr+O2-

CrO+2e→Cr+O2-

C2-0.75-0.81Cr2++2e→Cr
C3-0.56-0.63

Cr2O3+2e→2Cr2++3O2-

Cr2O3+2e→Cr2O2++2O2-

Cr2O3+2e→2CrO+O2-

表1  循环伏安曲线氧化还原峰归属汇总
图7  600 ℃下MNKC-500 μg·g-1 Mg体系浸泡100 h后316H不锈钢截面SEM像
图8  600 ℃下MNKC体系浸泡100 h后316H不锈钢截面SEM像
1 Myers P D, Goswami D Y. Thermal energy storage using chloride salts and their eutectics [J]. Appl. Therm. Eng., 2016, 109: 889
2 Xu X K, Wang X X, Li P W, et al. Experimental test of properties of KCl-MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems [J]. J. Sol. Energy Eng., 2018, 140: 051011
3 Xu X K, Dehghani G, Ning J X, et al. Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA [J]. Sol. Energy, 2018, 162: 431
4 Li Y Y, Xu X K, Wang X X, et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP [J]. Sol. Energy, 2017, 152: 57
5 Hu B H, Ding J, Wei X L, et al. Test of thermal physics and analysis on thermal stability of high temperature molten salt [J]. Inorgan. Chem. Ind., 2010, 42(1): 22
5 胡宝华, 丁静, 魏小兰等. 高温熔盐的热物性测试及热稳定性分析 [J]. 无机盐工业, 2010, 42(1): 22
6 Ding W J, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review [J]. Front. Chem. Sci. Eng., 2018, 12: 564
7 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides [J]. Sol. Energy, 2018, 176: 350
8 Pelton A D, Chartrand P. Thermodynamic evaluation and optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system using the modified quasi-chemical model [J]. Metall. Mater. Trans., 2001, 32A: 1361
9 Sun L P, Wu Y T, Ma C F. Experimental study on optimization of molten salt for solar high temperature heat storage [J]. Acta Energ. Sol. Sin., 2008, 29: 1092
9 孙李平, 吴玉庭, 马重芳. 太阳能高温蓄热熔融盐优选的实验研究 [J]. 太阳能学报, 2008, 29: 1092
10 Patel N S, Pavlík V, Boča M. High-temperature corrosion behavior of superalloys in molten salts: A review [J]. Crit. Rev. Solid State Mater. Sci., 2017, 42: 83
11 Sun H, Su X Z, Zhang P, et al. Research status and progress of molten salts corrosion for concentrated solar thermal power [J]. Corros. Sci. Prot. Technol., 2017, 29: 282
11 孙华, 苏兴治, 张鹏等. 聚焦太阳能热发电用熔盐腐蚀研究现状与展望 [J]. 腐蚀科学与防护技术, 2017, 29: 282
12 Vignarooban K, Pugazhendhi P, Tucker C, et al. Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications [J]. Sol. Energy, 2014, 103: 62
13 Vindstad J E, Mediaas H, Østvold T. Hydrolysis of MgCl2-containing melts [J]. Acta Chem. Scand., 1997, 51: 1192
14 Tzvetkoff T, Kolchakov J. Mechanism of growth, composition and structure of oxide films formed on ferrous alloys in molten salt electrolytes-a review [J]. Mater. Chem. Phys., 2004, 87: 201
15 Ding W J, Shi H, Xiu Y L, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere [J]. Sol. Energy Mater. Sol. Cells, 2018, 184: 22
16 Raiman S S, Lee S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts [J]. J. Nucl. Mater., 2018, 511: 523
17 Olander D. Redox condition in molten fluoride salts-Definition and control [J]. J. Nucl. Mater., 2002, 300: 270
18 Zeng C L, Zhang J Q, Wu W T. Electrochemistry of corrosion in molten salts [J]. Corros. Sci. Prot. Technol., 1992, 4: 16
18 曾潮流, 张鉴清, 吴维. 熔盐腐蚀电化学 [J]. 腐蚀科学与防护技术, 1992, 4: 16
19 Tian H Q, Du L C, Huang C L, et al. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer [J]. J. Mater. Chem., 2017, 5A: 14811
20 Jasien P G, Dykstra C E. An ab initio study of the stability and electronic structure of univalent magnesium salts [J]. Chem. Phys. Lett., 1984, 106: 276
21 Krumpelt M, Fischer J, Johnson I. Reaction of magnesium metal with magnesium chloride [J]. J. Phys. Chem., 1968, 72: 506
22 Garcia-Diaz B L, Olson L, Martinez-Rodriguez M, et al. High temperature electrochemical engineering and clean energy systems [J]. J. S. C. Acad. Sci., 2016, 14: 11
23 Mehrabadi B A T, Weidner J W, Garcia-Diaz B, et al. Modeling the effect of cathodic protection on superalloys inside high temperature molten salt systems [J]. J. Electrochem. Soc., 2017, 164: C171
24 Zhang M J, Li J D, Guo Q F. Recovery of magnesium from rejected magnesium alloy by vacuum sublimation process-magnesium alloy treating technology [J]. Light Met., 2006, (2): 48
24 张明杰, 李继东, 郭清富. 真空升华法从废镁合金中回收镁—镁合金无害化处理技术 [J]. 轻金属, 2006, (2): 48
25 Ding W J, Bonk A, Gussone J, et al. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage [J]. J. Energy Storage, 2018, 15: 408
26 Wang D H, Xiao W. Inert anode development for high-temperature molten salts [A].
26 Lantelme F, Groult H. Molten Salts Chemistry [M]. Oxford: Elsevier, 2013: 171
27 Sun H, Wang J Q, Li Z J, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt [J]. Sol. Energy, 2018, 171: 320
28 Martínez A M, Castrillejo Y, Børresen B, et al. Chemical and electrochemical behaviour of chromium in molten chlorides [J]. J. Electroanal. Chem., 2000, 493: 1
[1] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[2] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[3] 蒋秀,屈定荣,刘小辉. 湿气管线的顶部腐蚀研究概况[J]. 中国腐蚀与防护学报, 2011, 31(2): 86-90.