|
|
硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 |
王欣彤, 陈旭( ), 韩镇泽, 李承媛, 王岐山 |
辽宁石油化工大学石油天然气工程学院 抚顺 113001 |
|
Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria |
WANG Xintong, CHEN Xu( ), HAN Zhenze, LI Chengyuan, WANG Qishan |
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China |
引用本文:
王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
Xintong WANG,
Xu CHEN,
Zhenze HAN,
Chengyuan LI,
Qishan WANG.
Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 43-50.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.268
或
https://www.jcscp.org/CN/Y2021/V41/I1/43
|
1 |
Yassar R S, Scudiero L, Alamr A S, et al. Microstructure-mechanical and chemical behavior relationships in passive thin films [J]. Thin Solid Films, 2010, 518: 2757
|
2 |
Vignesh K, Perumal A E, Velmurugan P. Resistance spot welding of AISI-316L SS and 2205 DSS for predicting parametric influences on weld strength-Experimental and FEM approach [J]. Arch. Civ. Mech. Eng., 2019, 19: 1029
|
3 |
Sozańska M, Kłyk-Spyra K. Investigation of hydrogen induced cracking in 2205 duplex stainless steel in wet H2S environments after isothermal treatment at 675, 750 and 900 ℃ [J]. Mater. Charact., 2006, 56: 399
|
4 |
Naghizadeh M, Moayed M H. Investigation of the effect of solution annealing temperature on critical pitting temperature of 2205 duplex stainless steel by measuring pit solution chemistry [J]. Corros. Sci., 2015, 94: 179
|
5 |
Sieurin H, Sandström R. Austenite reformation in the heat-affected zone of duplex stainless steel 2205 [J]. Mater. Sci. Eng., 2006, A418: 250
|
6 |
Lin H X, Fan Y G, Xiong H, et al. Comparision of stress corrosion resistance of 22Cr duplex stainless steel, 304L and 316L common austenitic stainless steels in chloride solutions [J]. Corros. Prot., 2009, 30: 386
|
6 |
林红先, 樊玉光, 熊惠等. 22Cr双相不锈钢与304L、316L钢在氯化物溶液中耐应力腐蚀性能的比较 [J]. 腐蚀与防护, 2009, 30: 386
|
7 |
Tsai W T, Chen M S. Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution [J]. Corros. Sci., 2000, 42: 545
|
8 |
Wu W, Liu Z Y, Hu S S, et al. Effect of pH and hydrogen on the stress corrosion cracking behavior of duplex stainless steel in marine atmosphere environment [J]. Ocean. Eng., 2017, 146: 311
|
9 |
Song Z L, Yang L J, Moradi M, et al. Study on failure behavior of duplex stainless steel in Marine environment [A]. Marine Materials Corrosion and Protection Conference [C]. Beijing: 2014
|
9 |
宋振纶, 杨丽景, Moradi M等. 双相不锈钢在海洋环境中的失效行为研究 [A]. 2014海洋材料腐蚀与防护大会论文集 [C]. 北京: 2014
|
10 |
Yan T, Song Z L, Yang L J, et al. Effect of Vibrio neocaledonicus sp. on corrosion behavior of copper in artificial sea Water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 157
|
10 |
闫涛, 宋振纶, 杨丽景等. 新喀里多尼亚弧菌对Cu在人工海水中腐蚀行为的影响 [J]. 中国腐蚀与防护报, 2016, 36: 157
|
11 |
Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
|
11 |
吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353
|
12 |
Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316l ss by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 48
|
12 |
刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32: 48
|
13 |
Xu C M, Zhang Y H, Cheng G X, et al. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria [J]. Mater. Sci. Eng., 2007, A443: 235
|
14 |
Rao T S, Nair K V K. Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater [J]. Corros. Sci., 1998, 40: 1821
|
15 |
Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
|
16 |
Kholodenko V P, Jigletsova S K, Chugunov V A, et al. Chemicomicrobiological diagnostics of stress corrosion cracking of trunk pipelines [J]. Appl. Biochem. Microbiol., 2000, 36: 594
|
17 |
Stipaničev M, Rosas O, Basseguy R, et al. Electrochemical and fractographic analysis of microbiologically assisted stress corrosion cracking of carbon steel [J]. Corros. Sci., 2014, 80: 60
|
18 |
Javaherdashti R, Raman R K S, Panter C, et al. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria [J]. Int. Biodeterior. Biodegrad., 2006, 58: 27
|
19 |
Domżalicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2007, 58: 413
|
20 |
Raman R K S, Javaherdashti R, Panter C, et al. Hydrogen embrittlement of a low carbon steel during slow strain testing in chloride solutions containing sulphate reducing bacteria [J]. Mater. Sci. Technol., 2005, 21: 1094
|
21 |
Wu T Q, Yan M C, Zeng D C, et al. Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria [J]. Corros. Sci., 2015, 91: 86
|
22 |
Wu T Q, Yan M C, Yu L B, et al. Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment [J]. Corros. Sci., 2019, 157: 518
|
23 |
Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
|
24 |
Huang Y L. Corrosion failure of marine steel in sea-mud containing sulfate reducing bacteria [J]. Mater. Corros., 2004, 55: 124
|
25 |
Wang J, Li Q F, Fu Y D, et al. MIC behavior of the low alloy steel with different zn-epoxy coating in SRB solution [J]. Key Eng. Mater., 2011, 488/489: 262
|
26 |
Mcgenity T J, Timmis K N, Nogales B. Hydrocarbon and Lipid Microbiology Protocols [M]. Berlin: Springer Protocols Handbooks, 2016
|
27 |
Łabanowski J, Rzychoń T, Simka W, et al. Sulfate-reducing bacteria-assisted hydrogen-induced stress cracking of 2205 duplex stainless steels [J]. Mater. Corros., 2019, 70: 1667
|
28 |
Chou S L, Tsai W T. Hydrogen embrittlement of duplex stainless steel in concentrated sodium chloride solution [J]. Mater. Chem. Phys., 1999, 60: 137
|
29 |
Craidy P, Briottet L, Santos D. Hydrogen-microstructure-mechanical properties interactions in super duplex stainless steel components [J]. Int. J. Hydrog. Energ., 2015, 40: 17084
|
30 |
Silverstein R, Eliezer D. Hydrogen trapping mechanism of different duplex stainless steels alloys [J]. J. Alloy. Compd., 2015, 644: 280
|
31 |
Huang Y L, Cao C N, Lin H C, et al. Effects of hydrogen on the scc of austeniticstainless steel in acidic chloride solution [J]. Studia Marina Sin., 1998, (40): 109
|
31 |
黄彦良, 曹楚南, 林海潮等. 氢对奥氏体不锈钢在酸性氯离子溶液中SCC作用初探 [J]. 海洋科学集刊, 1998, (40): 109
|
32 |
Sowards J W, Williamson C H D, Weeks T S, et al. The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels [J]. Corros. Sci., 2014, 79: 128
|
33 |
Liu J H, Liang X, Li S M. Study of microbiologically induced corrosion action on Al-6Mg-Zr and Al-6Mg-Zr-Sc [J]. J. Rare Earth., 2007, 25: 609
|
34 |
Yang Z, Huo C Y, Zhu Y Y, et al. Stress corrosion cracking of X70 grade line pipe steel in H2S aqueous solutions [J]. Mar. Sci., 2005, 29(10): 23
|
34 |
杨洲, 霍春勇, 朱永艳等. 硫化氢对管线钢在氯化钠溶液中应力腐蚀开裂的影响 [J]. 海洋科学, 2005, 29(10): 23
|
35 |
Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
|
36 |
Wu T Q, Sun C, Yan M C, et al. Sulfate-reducing bacteria-assisted cracking [J]. Corros. Rev., 2019, 37: 231
|
37 |
Dec W, Mosiałek M, Socha R P, et al. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies [J]. Mater. Chem. Phys., 2017, 195: 28
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|