Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 43-50    DOI: 10.11902/1005.4537.2019.268
  研究报告 本期目录 | 过刊浏览 |
硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究
王欣彤, 陈旭(), 韩镇泽, 李承媛, 王岐山
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria
WANG Xintong, CHEN Xu(), HAN Zhenze, LI Chengyuan, WANG Qishan
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(8756 KB)   HTML
摘要: 

采用动电位极化技术、慢应变速率拉伸实验 (SSRT) 以及扫描电子显微镜 (SEM) 等方法研究了硫酸盐还原菌 (SRB) 新陈代谢对2205双相不锈钢 (DSS) 在3.5% (质量分数) NaCl溶液中的应力腐蚀开裂 (SCC) 行为的影响。结果表明,与无菌溶液中相比,SRB的存在促进了2205DSS的阳极溶解过程,诱发了点蚀,为SCC萌生提供了裂纹源。2205DSS的SCC敏感性与SRB活性浓度呈正相关,在稳定生长期SRB活性浓度最大,此时2205DSS的SCC敏感性最大。2205DSS在含SRB的3.5%NaCl溶液中发生的SCC机理为阳极溶解和氢脆混合控制机制。SRB作用下,2205DSS中铁素体相表现为穿晶解理特征,奥氏体相表现为韧性撕裂的特征,铁素体相具有更高的SCC敏感性。

关键词 2205双相不锈钢硫酸盐还原菌微生物腐蚀应力腐蚀开裂    
Abstract

Materials served in marine environments are not only subjected to the Cl- and ocean currents, but also suffered from biological fouling. The effect of sulfate reduction bacteria (SRB) metabolism on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) in 3.5% (mass fraction) NaCl solution were investigated by means of potentiondynamic polarization technology, slow strain rate test (SSRT) and scanning electron microscopy (SEM). The results showed that compared with the sterile solution, the presence of SRB promoted the anodic dissolution process of 2205 DSS in the bacterial solution and induced pitting, which facilitated cracks initiation. The SCC sensitivity of 2205 DSS was positively correlated with the concentration of SRB activity. The SRB activity concentration was the highest during their stable growth period, and the resulted metabolite H2S could induce the increase of brittleness of the steel. In this case, SCC sensitivity of 2205DSS was the highest. The SCC mechanism of 2205DSS in 3.5%NaCl solution containing SRB was the mutual control of anodic dissolution and hydrogen damage. In the presence of SRB, the ferritic phase in 2205DSS exhibited transgranular cleavage, while the austenitic phase exhibited ductile tearing, and the ferritic phase had higher SCC sensitivity.

Key words2205 duplex stainless steel    sulfate-reducing bacteria    microbiological corrosion    stress corrosion cracking
收稿日期: 2019-12-19     
ZTFLH:  TG172.5  
基金资助:辽宁省教育厅重点项目(L2017LZD004);教育部“春晖”国际合作计划项目
通讯作者: 陈旭     E-mail: cx0402@sina.com
Corresponding author: CHEN Xu     E-mail: cx0402@sina.com
作者简介: 王欣彤,女,1995年生,硕士生

引用本文:

王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
Xintong WANG, Xu CHEN, Zhenze HAN, Chengyuan LI, Qishan WANG. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 43-50.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.268      或      https://www.jcscp.org/CN/Y2021/V41/I1/43

图1  2205DSS的金相显微组织
图2  SSRT试样示意图
图3  SRB在3.5%NaCl溶液中的生长曲线
图4  2205DSS在3.5%NaCl溶液中的极化曲线
ConditionTime / dIp / μA·cm-2Ecorr / mVEb / mVPassivasion interval / mV
Without SRB34.26 (first passivation)-50217-380~17
28.2 (second passivation)1200380~1200
With SRB3502-6951165-428~1165
8602-8151297-464~1279
101288-6821104-476~1104
14417-8281213-488~1213
表1  2205不锈钢在3.5%NaCl溶液中动电位极化曲线拟合结果
图5  2205DSS在3.5%NaCl溶液中浸泡不同时间的慢拉伸应力-应变曲线
图6  SSRT后2205DSS伸长率和断面收缩率的变化曲线
图7  2205DSS在不同条件下主断口和侧断口形貌
1 Yassar R S, Scudiero L, Alamr A S, et al. Microstructure-mechanical and chemical behavior relationships in passive thin films [J]. Thin Solid Films, 2010, 518: 2757
2 Vignesh K, Perumal A E, Velmurugan P. Resistance spot welding of AISI-316L SS and 2205 DSS for predicting parametric influences on weld strength-Experimental and FEM approach [J]. Arch. Civ. Mech. Eng., 2019, 19: 1029
3 Sozańska M, Kłyk-Spyra K. Investigation of hydrogen induced cracking in 2205 duplex stainless steel in wet H2S environments after isothermal treatment at 675, 750 and 900 ℃ [J]. Mater. Charact., 2006, 56: 399
4 Naghizadeh M, Moayed M H. Investigation of the effect of solution annealing temperature on critical pitting temperature of 2205 duplex stainless steel by measuring pit solution chemistry [J]. Corros. Sci., 2015, 94: 179
5 Sieurin H, Sandström R. Austenite reformation in the heat-affected zone of duplex stainless steel 2205 [J]. Mater. Sci. Eng., 2006, A418: 250
6 Lin H X, Fan Y G, Xiong H, et al. Comparision of stress corrosion resistance of 22Cr duplex stainless steel, 304L and 316L common austenitic stainless steels in chloride solutions [J]. Corros. Prot., 2009, 30: 386
6 林红先, 樊玉光, 熊惠等. 22Cr双相不锈钢与304L、316L钢在氯化物溶液中耐应力腐蚀性能的比较 [J]. 腐蚀与防护, 2009, 30: 386
7 Tsai W T, Chen M S. Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution [J]. Corros. Sci., 2000, 42: 545
8 Wu W, Liu Z Y, Hu S S, et al. Effect of pH and hydrogen on the stress corrosion cracking behavior of duplex stainless steel in marine atmosphere environment [J]. Ocean. Eng., 2017, 146: 311
9 Song Z L, Yang L J, Moradi M, et al. Study on failure behavior of duplex stainless steel in Marine environment [A]. Marine Materials Corrosion and Protection Conference [C]. Beijing: 2014
9 宋振纶, 杨丽景, Moradi M等. 双相不锈钢在海洋环境中的失效行为研究 [A]. 2014海洋材料腐蚀与防护大会论文集 [C]. 北京: 2014
10 Yan T, Song Z L, Yang L J, et al. Effect of Vibrio neocaledonicus sp. on corrosion behavior of copper in artificial sea Water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 157
10 闫涛, 宋振纶, 杨丽景等. 新喀里多尼亚弧菌对Cu在人工海水中腐蚀行为的影响 [J]. 中国腐蚀与防护报, 2016, 36: 157
11 Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
11 吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353
12 Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316l ss by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 48
12 刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32: 48
13 Xu C M, Zhang Y H, Cheng G X, et al. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria [J]. Mater. Sci. Eng., 2007, A443: 235
14 Rao T S, Nair K V K. Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater [J]. Corros. Sci., 1998, 40: 1821
15 Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
16 Kholodenko V P, Jigletsova S K, Chugunov V A, et al. Chemicomicrobiological diagnostics of stress corrosion cracking of trunk pipelines [J]. Appl. Biochem. Microbiol., 2000, 36: 594
17 Stipaničev M, Rosas O, Basseguy R, et al. Electrochemical and fractographic analysis of microbiologically assisted stress corrosion cracking of carbon steel [J]. Corros. Sci., 2014, 80: 60
18 Javaherdashti R, Raman R K S, Panter C, et al. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria [J]. Int. Biodeterior. Biodegrad., 2006, 58: 27
19 Domżalicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2007, 58: 413
20 Raman R K S, Javaherdashti R, Panter C, et al. Hydrogen embrittlement of a low carbon steel during slow strain testing in chloride solutions containing sulphate reducing bacteria [J]. Mater. Sci. Technol., 2005, 21: 1094
21 Wu T Q, Yan M C, Zeng D C, et al. Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria [J]. Corros. Sci., 2015, 91: 86
22 Wu T Q, Yan M C, Yu L B, et al. Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment [J]. Corros. Sci., 2019, 157: 518
23 Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
24 Huang Y L. Corrosion failure of marine steel in sea-mud containing sulfate reducing bacteria [J]. Mater. Corros., 2004, 55: 124
25 Wang J, Li Q F, Fu Y D, et al. MIC behavior of the low alloy steel with different zn-epoxy coating in SRB solution [J]. Key Eng. Mater., 2011, 488/489: 262
26 Mcgenity T J, Timmis K N, Nogales B. Hydrocarbon and Lipid Microbiology Protocols [M]. Berlin: Springer Protocols Handbooks, 2016
27 Łabanowski J, Rzychoń T, Simka W, et al. Sulfate-reducing bacteria-assisted hydrogen-induced stress cracking of 2205 duplex stainless steels [J]. Mater. Corros., 2019, 70: 1667
28 Chou S L, Tsai W T. Hydrogen embrittlement of duplex stainless steel in concentrated sodium chloride solution [J]. Mater. Chem. Phys., 1999, 60: 137
29 Craidy P, Briottet L, Santos D. Hydrogen-microstructure-mechanical properties interactions in super duplex stainless steel components [J]. Int. J. Hydrog. Energ., 2015, 40: 17084
30 Silverstein R, Eliezer D. Hydrogen trapping mechanism of different duplex stainless steels alloys [J]. J. Alloy. Compd., 2015, 644: 280
31 Huang Y L, Cao C N, Lin H C, et al. Effects of hydrogen on the scc of austeniticstainless steel in acidic chloride solution [J]. Studia Marina Sin., 1998, (40): 109
31 黄彦良, 曹楚南, 林海潮等. 氢对奥氏体不锈钢在酸性氯离子溶液中SCC作用初探 [J]. 海洋科学集刊, 1998, (40): 109
32 Sowards J W, Williamson C H D, Weeks T S, et al. The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels [J]. Corros. Sci., 2014, 79: 128
33 Liu J H, Liang X, Li S M. Study of microbiologically induced corrosion action on Al-6Mg-Zr and Al-6Mg-Zr-Sc [J]. J. Rare Earth., 2007, 25: 609
34 Yang Z, Huo C Y, Zhu Y Y, et al. Stress corrosion cracking of X70 grade line pipe steel in H2S aqueous solutions [J]. Mar. Sci., 2005, 29(10): 23
34 杨洲, 霍春勇, 朱永艳等. 硫化氢对管线钢在氯化钠溶液中应力腐蚀开裂的影响 [J]. 海洋科学, 2005, 29(10): 23
35 Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
36 Wu T Q, Sun C, Yan M C, et al. Sulfate-reducing bacteria-assisted cracking [J]. Corros. Rev., 2019, 37: 231
37 Dec W, Mosiałek M, Socha R P, et al. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies [J]. Mater. Chem. Phys., 2017, 195: 28
[1] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[2] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[3] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[4] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[5] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[6] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[7] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[8] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[9] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[10] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[11] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[12] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[13] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[14] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[15] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.