Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 455-462    DOI: 10.11902/1005.4537.2019.202
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
大气环境中飞机构件的电偶腐蚀研究
丁清苗, 秦永祥(), 崔艳雨
中国民航大学机场学院 天津 300300
Galvanic Corrosion of Aircraft Components in Atmospheric Environment
DING Qingmiao, QIN Yongxiang(), CUI Yanyu
College of Airport, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(4427 KB)   HTML
摘要: 

基于大型仿真软件COMSOL Multiphysics建立了7050铝合金与AerMet100钢组成的电偶对在大气环境中的腐蚀模拟预测模型。研究了偶对表面的盐负载量、大气环境的相对湿度以及阴阳极面积比对腐蚀行为的影响。结果表明:在大气环境相对湿度为0.91时腐蚀速率最快,当偶对表面盐负载量超过5.7 g/m2时会发生严重腐蚀,改变阴阳极面积比不会引起电极极性逆转,且盐负载量、偶对阴阳极面积比与7050铝合金腐蚀速率均呈现正相关关系。

关键词 7050 Al合金AerMet100钢COMSOL大气电偶腐蚀    
Abstract

7050 Al-alloy is often used for medium and heavy plate extrusions as aircraft components. Based on large-scale simulation software COMSOL Multiphysics, a corrosion simulation model for the galvanic couple of 7050 Al-alloy and AerMet100 steel in atmospheric environment is established. The effect of salt deposits on the surface of galvanic couple, the relative humidity of atmospheric environment, and the area ratio of the anode to the cathode on the corrosion behavior was investigated respectively. The results show that the corrosion rate is the fastest when the relative humidity of the atmosphere is 0.91. When the surface salt deposits exceeds 5.7 g/m2, severe corrosion will occur. Changing the ratio of cathode to anode will not cause the electrode polarity reversal. The corrosion rate of 7050 Al-alloy are positively correlated with the salt deposits and the area ratio of cathode to anode.

Key words7050 Al-alloy    AerMet100 steel    COMSOL    atmospheric galvanic corrosion
收稿日期: 2019-11-13     
ZTFLH:  TG174  
基金资助:2019年天津市研究生科研创新项目(2019YJSS069);中央高校基金项目(3122019107)
通讯作者: 秦永祥     E-mail: 550462668@qq.com
Corresponding author: QIN Yongxiang     E-mail: 550462668@qq.com
作者简介: 丁清苗,女,1984年生,副教授

引用本文:

丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
Qingmiao DING, Yongxiang QIN, Yanyu CUI. Galvanic Corrosion of Aircraft Components in Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 455-462.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.202      或      https://www.jcscp.org/CN/Y2020/V40/I5/455

图1  7050铝合金基体—AerMet100钢螺栓连接模型
图2  三维模型简化方法
图3  二维轴对称模型
图4  微元体电流流动示意图
图5  电解质物性参数与大气相对湿度关系
图6  液膜厚度与大气相对湿度关系
图7  电解质电流密度分布云图
图8  电极表面电位分布云图
图9  电解质电流密度分布云图
图10  7050铝合金最大腐蚀深度
图11  电极表面总电流密度
图12  偶对接触点最大电流密度随湿度变化关系
图13  7050铝合金最大腐蚀深度随湿度变化关系
图14  不同阴阳极面积比下电解质电流密度分布云图
图15  不同螺栓头半径下BC段电极电位
图16  不同螺栓头半径下BC段电极表面电流密度
[1] Chen Y L, Huang H L, Zhang Y, et al. A method of atmospheric corrosion prediction for aircraft structure [J]. Mater. Corros., 2019, 70: 79
[2] Sun X G, Lin P, Man C, et al. Prediction model for atmospheric corrosion of 7005-T4 aluminum alloy in industrial and marine environments [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1313
[3] DeSantis M K, Triantafyllidou S, Schock M R, et al. Mineralogical evidence of galvanic corrosion in drinking water lead pipe joints [J]. Environ. Sci. Technol., 2018, 52: 3365
doi: 10.1021/acs.est.7b06010 pmid: 29446300
[4] Fu L, Liu Y L, Wang C W, et al. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry [J]. J. Semicond., 2018, 39: 046001
[5] Rahimi E, Rafsanjani-Abbasi A, Imani A, et al. Correlation of surface Volta potential with galvanic corrosion initiation sites in solid-state welded Ti-Cu bimetal using AFM-SKPFM [J]. Corros. Sci., 2018, 140: 30
[6] Coy A E, Viejo F, Skeldon P, et al. Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion [J]. Corros. Sci., 2010, 52: 3896
[7] Davidson R D, Cubides Y, Andrews J L, et al. Magnesium nanocomposite coatings for protection of a lightweight al alloy: Modes of corrosion protection, mechanisms of failure [J]. Phys. Status Solidi, 2019, 216A: 1800817
[8] Hou L G, Yu J J, Zhang D, et al. Corrosion behavior of friction stir welded Al-Mg-(Zn) alloys [J]. Rare Met. Mater. Eng., 2017, 46: 2437
doi: 10.1016/S1875-5372(17)30212-6
[9] Sun Q. Prediction and verification of galvanic corrosion of 7B04 aluminum alloy under simulated marine environment [J]. Fail. Anal. Prev., 2018, 13: 203
[9] (孙强. 模拟海洋环境下7B04铝合金电偶腐蚀预测及验证 [J]. 失效分析与预防, 2018, 13: 203)
[10] Zhang W Y. Progress in research on galvanic corrosion behavior and protection [J]. Total Corros. Control, 2018, 32(12): 51
[10] (张文毓. 电偶腐蚀与防护的研究进展 [J]. 全面腐蚀控制, 2018, 32(12): 51)
[11] Sburamanian G, Palraj S, Palanichamy S. Galvanic corrosion behaviour of aluminium 3004 and copper in tropical marine atmosphere [J]. J. Mar. Sci. Appl., 2014, 13: 230
doi: 10.1007/s11804-014-1244-z
[12] Cui T F, Liu D X, Shi P A, et al. Effect of stress and galvanic factors on the corrosion behave of aluminum alloy [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2018, 33: 688
doi: 10.1007/s11595-018-1879-8
[13] Su X. Corrosion behavior study of typical aluminum alloy in simulated marine atmospheric environment [D]. Handan: Hebei University of Engineering, 2013
[13] (苏霄. 典型铝合金在模拟海洋大气环境中腐蚀规律研究 [D]. 邯郸: 河北工程大学, 2013)
[14] Bian G X, Chen Y L, Zhang Y, et al. Equivalent conversion coefficient of aluminum/titanium alloy between acidic NaCl solution with different concentration and water based on galvanic corrosion simulation [J]. Mater. Rev., 2019, 33: 2746
[14] (卞贵学, 陈跃良, 张勇等. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数 [J]. 材料导报, 2019, 33: 2746)
[15] Zhang Y, Chen Y L, Wang C G. Study on galvanic corrosion of aluminum alloy related joint in simulated coastal wet atmosphere [J]. Mater. Rev., 2016, 30(10): 152
[15] (张勇, 陈跃良, 王晨光. 模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究 [J]. 材料导报, 2016, 30(10): 152)
[16] Mrema E, Itoh Y, Kaneko A. Galvanic corrosion of aluminium alloy members of bridge guiderails under severe atmospheric exposure conditions [J]. Corros. Eng. Sci. Technol., 2018, 54: 163
doi: 10.1080/1478422X.2018.1548410
[17] Srinath M K, Prasad M S G. Corrosion analysis of TiCN coated Al-7075 alloy for marine applications: a case study [J]. J. Inst. Energy, 2019, 100C: 371
[18] Chen Z F, Cui F, Kelly R G. Calculations of the cathodic current delivery capacity and stability of crevice corrosion under atmospheric environments [J]. J. Electrochem. Soc., 2008, 155: 360
[19] Mizuno D, Kelly R G. Galvanically induced intergranular corrosion of AA5083-H131 under atmospheric exposure conditions: Part 2—modeling of the damage distribution [J]. Corrosion, 2013, 69: 681
[20] Mizuno D, Shi Y, Kelly R. Modeling of galvanic interactions between AA5083 and steel under atmospheric condition [A]. COMSOL Conference [C]. Boston, 2011
[21] NACE. NACE StandardRP0775-2005 Standard Recommended Practice: Preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations [S]. Houston: NACE International
[22] Li Z Y, Xu H Y. Study on galvanic corrosion of AZ80 alloy and other alloys [J]. Hot Work. Technol., 2014, 43(8): 53
[22] (李智勇, 徐宏妍. AZ80镁合金与异种合金的电偶腐蚀研究 [J]. 热加工工艺, 2014, 43(8): 53)
[23] Campbell S A, Radford G J W, Tuck C D S, et al Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
[24] Cui T F, Liu D X, Shi P A, et al. Effect of NaCl concentration, pH value and tensile stress on the galvanic corrosion behavior of 5050 aluminum alloy [J]. Mater. Corros., 2016, 67: 72
[25] Wang R N, Zhang P Z, Wang Y F, et al. Galvanic corrosion behaviour of hot‐dipped zinc-aluminum alloy coated titanium-aluminum couples [J]. Mater. Corros., 2015, 65: 913
[26] Hu Z J, An Z J, Zhu Z H, et al. Galvanic corrosion behavior of hub-bolt joint of magnesium alloy [J]. Corros. Prot., 2018, 39: 184
[26] (胡志江, 安子军, 朱志华等. 镁合金轮毂螺栓连接的电偶腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 184)
[1] 曹发和, 柳晓燕, 朱泽洁, 叶珍妮, 刘盼, 张鉴清. 扫描电化学显微镜的数值模拟和距离控制及其应用[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[2] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[3] 李慧艳 董超芳,邹士文 肖 葵,孙 敏 钟 平 李晓刚,. 超高强钢在不同单一霉菌环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(2): 129-135.