Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 167-174    DOI: 10.11902/1005.4537.2018.183
  研究报告 本期目录 | 过刊浏览 |
海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究
胡玉婷, 董鹏飞, 蒋立, 肖葵(), 董超芳, 吴俊升, 李晓刚
北京科技大学新材料技术研究院 北京 100083
Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere
HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui(), DONG Chaofang, WU Junsheng, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(8125 KB)   HTML
摘要: 

研究了TC4-316L异种金属铆接件在模拟海洋大气环境条件下的腐蚀行为。利用失重法、X射线光电子能谱分析 (XPS)、扫描电子显微镜 (SEM)、激光共聚焦显微镜等方法分析了试样的腐蚀动力学、锈层成分、腐蚀形貌。结果表明,TC4-316L铆接件在周期浸润实验1200 h后,316L不锈钢发生了腐蚀,而TC4钛合金并没有明显的腐蚀现象;316L不锈钢腐蚀产物包含FeOOH,Fe3O4和Fe2O3,而TC4钛合金表面主要为TiO2和Ti2O3等钛的氧化物组成的氧化膜。与单件316L不锈钢相比,由于电偶腐蚀与缝隙腐蚀的共同作用,TC4-316L铆接件中的316L不锈钢腐蚀加速。

关键词 铆接件周浸实验钛合金316L不锈钢腐蚀行为    
Abstract

The corrosion behavior of riveted dissimilar metals TC4-316L in simulated marine atmospheric conditions was investigated by means of mass loss methods, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and confocal laser scanning microscopy. While the corrosion kinetics, rust composition, and corrosion morphology are mainly concerned. The results indicate 316L stainless steel is corroded when riveted parts TC4-316L were immersed in 3.5%NaCl solution periodically for 1200 h, but TC4 Ti-alloy has no obvious corrosion. The corrosion products of 316L stainless steel composed of FeOOH, Fe3O4 and Fe2O3, while the oxide scale formed on the surface of TC4 Ti-alloy is mainly TiO2 and Ti2O3. Compared with the corrosion behavior of the bare 316L stainless steel, the 316L stainless steel with riveted TC4 Ti-alloy was suffered from accelerated corrosion due to the combined effect of galvanic corrosion and crevice corrosion.

Key wordsriveted piece    periodic immersion    Ti-alloy    316L stainless steel    corrosion behavior
收稿日期: 2018-12-21     
ZTFLH:  TG174.3  
基金资助:国家重点研发计划(2014CB643300)
通讯作者: 肖葵     E-mail: xiaokui@ustb.edu.cn
Corresponding author: XIAO Kui     E-mail: xiaokui@ustb.edu.cn
作者简介: 胡玉婷,女,1992年生,博士生

引用本文:

胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
Yuting HU, Pengfei DONG, Li JIANG, Kui XIAO, Chaofang DONG, Junsheng WU, Xiaogang LI. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 167-174.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.183      或      https://www.jcscp.org/CN/Y2020/V40/I2/167

图1  试样铆接示意图
图2  C组中TC4钛合金腐蚀后宏观形貌
图3  周浸腐蚀实验后3组试样中的316L不锈钢表面形貌
图4  除锈后3组试样中的316L不锈钢表面形貌
图5  A组试样除锈后表面典型点蚀坑形貌
图6  B组不锈钢除锈后表面典型点蚀坑形貌
图7  C组中不锈钢除锈后表面典型点蚀坑形貌
图8  3组试样在3.5%NaCl溶液中周浸1200 h后的SEM像
图9  周浸实验后316L不锈钢的EDS结果
图10  TC4钛合金表面的XPS结果
图11  316L不锈钢腐蚀产物XPS分析
图12  TC4钛合金和316L不锈钢在3.5%NaCl溶液中的开路电位
[1] Liu H J, Deng C L, Wang J, et al. Research progress of galvanic corrosion in marine environment [J]. Equip. Environ. Eng., 2011, 8(2): 58
[1] (刘华剑, 邓春龙, 王佳等. 海洋环境中电偶腐蚀研究进展 [J]. 装备环境工程, 2011, 8(2): 58)
[2] Shi C Y, Yu Q Z. Welding of Dissimilar Metals [M]. Beijing: China Machine Press, 2012
[2] 史春元, 于启湛. 异种金属的焊接 [M]. 北京: 机械工业出版社, 2012)
[3] Leyens C, Peter M, translated by Chen Z H. Titanium and Titanium Alloys [M]. Beijing: Chemical Industry Press, 2005
[3] (Leyens C, Peter M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005)
[4] Wu J. Corrosion damage and anti-corrosion technology of stainless steel (6): Abrasion corrosion, cavitation corrosion and galvanic corrosion [J]. Corros. Prot., 1998, 19: 39
[4] (吴剑. 不锈钢的腐蚀破坏与防蚀技术 (六): 磨耗腐蚀、空泡腐蚀及电偶腐蚀 [J]. 腐蚀与防护, 1998, 19: 39)
[5] Mu W N, Zhai Y C, Shi S Z. Preparation, formation mechanism and mechanical properties of multilayered TiO2-organic nanocomposite film [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1128
[6] Ni D D. Effects of iron complex on the photocatalytic properties of titanium dioxide for degradation of phenol [D]. Changchun: Northeast Normal University, 2016
[6] (倪丹丹. 含铁配合物对二氧化钛光催化降解苯酚性能的影响 [D]. 长春: 东北师范大学, 2016)
[7] Chen L, Zhai Y, Tang Y B, et al. Critical chloride concentration of stainless steels in simulated concrete pore solutions [J]. Corros. Prot., 2014, 35: 446
[7] (陈龙, 瞿彧, 汤雁冰等. 不锈钢钢筋的临界氯离子浓度 [J]. 腐蚀与防护, 2014, 35: 446)
[8] Rumble Jr J R, Bickham D M, Powell C J. The NIST X‐ray photoelectron spectroscopy database [J]. Surf. Interface Anal., 1992, 19: 24
[9] Kong D C, Dong C F, Fang Y H, et al. Copper corrosion in hot and dry atmosphere environment in Turpan, China [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1721
[10] Kocijan A, DonikČ, Jenko M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions [J]. Corros. Sci., 2007, 49: 2083
[11] Wang X Y, Wu M S, Zhang L, et al. Corrosion behavior in 3.5% NaCl solution of 316L SS [J]. Corros. Sci. Prot. Technol., 2000, 12: 311
[11] (王轩义, 吴荫顺, 张琳等. 316L不锈钢钝化膜在Cl-介质中的耐蚀机制 [J]. 腐蚀科学与防护技术, 2000, 12: 311)
[12] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
[12] (王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[13] Zhang D L, Wang W, Li Y. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion [J]. Corros. Sci., 2010, 52: 1277
[14] Liu J H. Galvanic corrosion behavior between titanium alloy and high-strength alloys [J]. J. Beijing Univ. Aeronaut. Astronaut., 2003, 29: 124
[14] (刘建华. 高强合金与钛合金的电偶腐蚀行为 [J]. 北京航空航天大学学报, 2003, 29: 124)
[15] Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
[15] (黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 46)
[16] Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
[16] (陈兴伟, 吴建华, 王佳等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
[17] Liu S M, Fan G F. Investigation on galvanic corrosion susceptibility of heat-resistant stainless steel contacted with TA7 alloy [J]. J. Mater. Eng., 2000, (1): 17
[17] (刘双梅, 樊国福. TA7钛合金/耐热不锈钢电偶腐蚀敏感性研究 [J]. 材料工程, 2000, (1): 17)
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[6] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[10] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[13] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[14] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[15] 付颖, 张艳, 包星宇, 张伟, 王福会, 辛丽. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.