Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 96-104    DOI: 10.11902/1005.4537.2019.209
  研究报告 本期目录 | 过刊浏览 |
CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究
伊红伟1, 胡慧慧1, 陈长风1(), 贾小兰1, 胡丽华2
1 中国石油大学 (北京) 新能源与材料学院 北京 102249
2 中海油研究总院有限责任公司 北京 100029
Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment
YI Hongwei1, HU Huihui1, CHEN Changfeng1(), JIA Xiaolan1, HU Lihua2
1 School of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
2 CNOOC Research Institute Co. , LTD, Beijing 100029, China
全文: PDF(4558 KB)   HTML
摘要: 

研究了X65管线钢与316L不锈钢、Inconel 625双金属复合管的异种金属焊缝在CO2环境下的电偶腐蚀行为,以及油酸咪唑啉的缓蚀作用。结果表明,随着电偶电位差的增大,异种金属焊缝的腐蚀速率明显升高,并且都显著高于母材。添加油酸基咪唑啉缓蚀剂能降低异种金属焊缝在CO2环境下的均匀腐蚀速率。但是,当缓蚀剂浓度添加较低时,异种金属焊接试样的碳钢一侧出现了严重的沟槽腐蚀或密集的点蚀坑;进一步增加缓蚀剂浓度才能消除沟槽腐蚀现象。讨论了缓蚀剂对异种金属焊缝电偶腐蚀的抑制机理,该项研究可为异金属焊接接头处的腐蚀防护提供借鉴。

关键词 CO2腐蚀咪唑啉电偶腐蚀异金属焊接    
Abstract

The corrosion behavior of X65 pipeline steel, and the galvanic corrosion behavior of dissimilar metal welds of X65/316L stainless steel and X65/Inconel 625 in CO2-containing environments, as well as the inhibition effect of imidazoline oleic acid corrosion inhibitor on the corrosion were assessed. The results show that with the increase of the potential difference of the galvanic couples, the corrosion rate of the weld seams for X65 steel with different metals increases obviously, and which is significantly higher than that of the base metal. The addition of oleic acid imidazoline corrosion inhibitor can reduce the uniform corrosion rate of the weld seams for X65 steel with different metals in CO2-containing environment, but when the corrosion inhibitor concentration is low, serious groove corrosion or dense pitting pits appear on the X65 steel side of the welds for X65 steel with different metals. Further increase of corrosion inhibitor concentration can eliminate the phenomenon of groove corrosion. The electrochemical polarization curves and electrochemical impedance spectroscopy were used to analyze the inhibition mechanism of corrosion inhibitors on galvanic corrosion of dissimilar metal welds. This study can provide a reference for the corrosion protection of welding joints of dissimilar metals.

Key wordsCO2 corrosion    imidazoline    galvanic corrosion    hetero-metal welding
收稿日期: 2019-11-12     
ZTFLH:  TB37  
基金资助:国家科技重大专项(2016ZX05057001)
通讯作者: 陈长风     E-mail: chen_c_f@163.com
Corresponding author: CHEN Changfeng     E-mail: chen_c_f@163.com
作者简介: 伊红伟,男,1995年生,硕士生

引用本文:

伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
Hongwei YI, Huihui HU, Changfeng CHEN, Xiaolan JIA, Lihua HU. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 96-104.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.209      或      https://www.jcscp.org/CN/Y2020/V40/I2/96

MaterialCSiMnPSCrNiCuFeMoAl
X650.11000.2401.3400.00130.00800.0140.0170.038Bal.------
316L0.01100.3960.8990.02820.003316.36010.260------2.09---
Inconel 6250.00130.1000.0180.00380.000922.96063.6700.0150.109.000.096
表1  X65、316L不锈钢和Inconel 625合金的化学成分 (mass fraction / %)
图1  X65钢以及异种金属焊接材料在不同温度下的腐蚀速率
图2  未添加缓蚀剂异种金属焊缝腐蚀后的微观形貌
图3  X65和316L不锈钢、Inconel 625合金在模拟现场取出水中的腐蚀电位
图4  X65母材和3种金属焊缝试样在不同温度下添加30 μL/L缓蚀剂的模拟溶液中浸泡7 d后的腐蚀速率
MaterialTest temperature / ℃Efficiency of the corrosion
X65490%
1488%
3097%
X65/X65490%
1492%
3097%
X65/316L484%
1496%
3088%
X65/ Inconel487%
6251497%
3085%
表2  X65母材和3种金属焊缝试样在不同温度下添加30 μL/L缓蚀剂的模拟溶液中浸泡7 d后的缓蚀效率
图5  两种异种金属焊接试样在14和30 ℃下添加30 μL/L缓蚀剂的模拟现场取出水溶液中腐蚀7 d后的SEM像
图6  X65母材和3种金属焊缝试样在不同温度下添加50 μL/L缓蚀剂的模拟溶液中浸泡7 d后的腐蚀速率
MaterialTest temperature ℃Efficiency of the corrosion
X651489%
3096%
X65/X651490%
3097%
X65/316L1493%
3094%
X65/Inconel 6251495%
3096%
表3  X65母材和3种金属焊缝试样在不同温度下添加50 μL/L缓蚀剂的模拟溶液中浸泡7 d后的缓蚀效率
图7  两种异种金属焊接试样在14和 30 ℃下添加50 μL/L缓蚀剂的模拟现场取出水溶液中腐蚀7 d后的SEM像
图8  X65母材和3种金属焊缝试样在不同浓度缓蚀剂的模拟现场取出水溶液中的极化曲线
图9  X65以及X65/X65,X65/316L不锈钢,X65/Inconel 625焊接试样在不同浓度缓蚀剂的模拟现场取出水溶液中的Nyquist图
图10  X65以及X65/X65,X65/316L不锈钢,X65/Inconel 625焊接试样在添加/不添加缓蚀剂的模拟现场采出水溶液中的EIS等效电路图
MaterialConcentration / μL·L-1Rs / Ω·cm2Rct / Ω·cm2Cdl / 10-4 F·cm-2
X65Blank14.74292.482.588
3011.4228211.938
5014.1333921.581
X65/X65Blank16.42757.22.136
3020.1110122.134
5020.111627.040.02797
X65/316LBlank27.56728.72.359
309.45913571.804
5012.8254641.25
X65/Inconel 625Blank29.82906.12.961
3013.6811472.54
5012.2521011.243
表4  EIS等效电路拟合参数
[1] Li F G, Yang J M, Feng Q, et al. Failure mechanism and control measures analysis of in-service bimetal composite pipe [J]. Weld. Pipe Tube, 2019, 42(9): 64
[1] (李发根, 杨家茂, 冯泉等. 在役双金属复合管道失效机制及控制措施分析 [J]. 焊管, 2019, 42(9): 64)
[2] Kane R D, Wilheim S M, Yoshida T, et al. Analysis of bimetallic pipe for sour service [J]. SPE Prod. Eng., 1991, 6: 291
[3] Copson H R. Galvanic corrosion of steel coupled to nickel [J]. Ind. Eng. Chem., 1945, 37: 721
[4] Kuhn R J. Galvanic corrosion on cast iron pipes [J]. Ind. Eng. Chem., 1930, 22: 335
[5] Trinh D, Dauphin D P, Mengesha T U, et al. Influence of edge effects on local corrosion rate of magnesium alloy/mild steel galvanic couple [J]. Anal. Chem., 2012, 84: 9899
[6] Yang F. The study of the galvanic corrosion behavior between the carbon steel and stainless steel in marine environment [D]. Dalian: Dalian University of Technology, 2017
[6] (杨飞. 碳钢与不锈钢在海洋环境中的电偶腐蚀问题研究 [D]. 大连: 大连理工大学, 2017)
[7] Tian Y Q, Chang W, Hu L H, et al. Risk of galvanic corrosion among API X65, 316L and Inconel 625 [J]. Surf. Technol., 2016, 45(5): 128
[7] (田永芹, 常炜, 胡丽华等. APIX65、316L不锈钢及Inconel 625间电偶腐蚀风险研究 [J]. 表面技术, 2016, 45(5): 128)
[8] Zhang H H, Pang X L, Gao K W. Localized CO2 corrosion of carbon steel with different microstructures in brine solutions with an imidazoline-based inhibitor [J]. Appl. Surf. Sci., 2018, 442: 446
[9] Negm N A, Migahed M A, Farag R K, et al. High performance corrosion inhibition of novel tricationic surfactants on carbon steel in formation water: Electrochemical and computational evaluations [J]. J. Mol. Liq., 2018, 262: 363
[10] Li X H, Deng S D, Lin T, et al. Inhibition action of triazolyl blue tetrazolium bromide on cold rolled steel corrosion in three chlorinated acetic acids [J]. J. Mol. Liq., 2019, 274: 77
[11] Jevremović I, Singer M, Nešić S, et al. Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide [J]. Corros. Sci., 2013, 77: 265
[12] Fei F L, Hu J, Wei J X, et al. Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor [J]. Constr. Build. Mater., 2014, 70: 43
[13] López D A, Simison S N, de Sánchez S R. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole [J]. Electrochim. Acta, 2003, 48: 845
[14] Zhao J M, Chen G H. The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution [J]. Electrochim. Acta, 2012, 69: 247
[15] Zheng X W, Zhang S T, Li W P, et al. Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution [J]. Corros. Sci., 2015, 95: 168
[16] Hu Z Y, Meng Y B, Ma X M, et al. Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl [J]. Corros. Sci., 2016, 112: 563
[17] Qian S, Cheng Y F. Synergism of imidazoline and sodium dodecylbenzenesulphonate inhibitors on corrosion inhibition of X52 carbon steel in CO2-saturated chloride solutions [J]. J. Mol. Liq., 2019, 294: 111674
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[3] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[6] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[7] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[10] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[11] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[12] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[13] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[14] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[15] 王玉娜, 聂凯斌, 杨冬, 姚隽旸, 董万田, 廖强强. 模拟海水淡化一级反渗透产水中咪唑啉缓蚀剂对20#碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 407-414.