Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 159-166    DOI: 10.11902/1005.4537.2019.012
  研究报告 本期目录 | 过刊浏览 |
H62黄铜/TC4钛合金焊接件腐蚀行为研究
白苗苗1,2, 白子恒1,2, 蒋立1,2, 张东玖3, 姚琼3, 魏丹4, 董超芳1,2, 肖葵1,2()
1 北京科技大学新材料技术研究院 北京 100083
2 北京科技大学腐蚀与防护中心 北京 100083
3 西昌卫星发射中心航天发射场可靠性技术重点实验室 海口 571000
4 中国科学技术协会服务中心 北京 100081
Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens
BAI Miaomiao1,2, BAI Ziheng1,2, JIANG Li1,2, ZHANG Dongjiu3, YAO Qiong3, WEI Dan4, DONG Chaofang1,2, XIAO Kui1,2()
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
3 China Xichang Satellite Launch Center Key Laboratory of Reliability Technology for Space Launch Site, Haikou 571000, China
4 Service Center for China Science and Technology Association, Beijing 100081, China
全文: PDF(5571 KB)   HTML
摘要: 

采用真空扩散焊接进行H62黄铜与TC4钛合金的焊接,并使用3.5% (质量分数) NaCl溶液对焊接件进行全浸实验。利用SEM及EDS对焊缝两侧的微观形貌及元素分布进行分析,并分析距离焊缝不同距离的区域内,H62黄铜的微观腐蚀形貌的差异;利用扫描Kelvin探针测试焊缝区及其两侧基底合金的表面电位随浸泡时间的变化,分析焊接件的电偶腐蚀规律;利用XPS分析焊接后的H62黄铜与TC4钛合金区域的化学成分,并分析其腐蚀机理。结果表明,由真空扩散焊连接的H62黄铜及TC4钛合金焊缝间距约为25~30 μm;浸泡实验初期H62黄铜电位略高于TC4钛合金的,但是随着浸泡实验时间延长,H62黄铜的表面电位开始逐渐下降,后期 (4 h) 表面电位开始低于钛合金的;同时,距离TC4钛合金较近区域的H62黄铜腐蚀较焊缝远处的更严重;H62黄铜浸泡实验后的腐蚀产物主要包括CuO,Cu2O,CuCl,CuCl2和Cu(OH)2,而TC4钛合金表面主要为含有TiO2和Ti2O3 的氧化膜。说明浸泡在3.5%NaCl溶液中的H62黄铜/TC4钛合金焊接试样存在电偶腐蚀倾向,H62黄铜作为阳极被加速腐蚀,TC4钛合金作为阴极被保护,阴极和阳极区域间的电偶对距离作用越长,腐蚀程度越轻。

关键词 真空扩散焊接电偶腐蚀扫描Kelvin探针浸泡腐蚀实验黄铜Ti    
Abstract

The corrosion behavior of vacuum diffusion welded component of H62 brass and TC4 Ti-alloy in 3.5% (mass fraction) NaCl solution for up to 24 h was investigated by means of immersion test, scanning Kelvin probe test, scanning electron microscopy attached with EDS and X-ray photoelectron spectroscopy. The results demonstrate that the weld seam width of the jointed H62 brass and TC4 Ti-alloy is about 25~30 μm, and the free corrosion potential of H62 brass is slightly higher than that of TC4 Ti-alloy at the initial stage of immersion test. However, with the prolongation of immersion time, the free corrosion potential of TC4 Ti-alloy turns to be higher than that of H62 brass, and the corrosion of the area of H62 brass, where closed to TC4 Ti-alloy is much more severe than that, where far away from the weld seam. The corrosion products of H62 brass after immersion test composed mainly of CuO, Cu2O, CuCl, CuCl2 and Cu(OH)2, while the scale on TC4 Ti-alloy composed mainly of Ti-oxides TiO2 and Ti2O3. The welded couple of H62 brass/TC4 Ti-alloy exhibits galvanic corrosion tendency in 3.5%NaCl solution, and the H62 brass acts as anode in the galvanic couple, which correspondingly underwent accelerated corrosion process.

Key wordsvacuum diffusion welding    galvanic corrosion    scanning Kelvin probe    immersion test    brass    Ti
收稿日期: 2019-01-14     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51671027);国家重点研发计划(2017YFB0304602);国家材料环境腐蚀平台 (NECP)
通讯作者: 肖葵     E-mail: xiaokui@ustb.edu.cn
Corresponding author: XIAO Kui     E-mail: xiaokui@ustb.edu.cn
作者简介: 白苗苗,女,1997年生,硕士生

引用本文:

白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
Miaomiao BAI, Ziheng BAI, Li JIANG, Dongjiu ZHANG, Qiong YAO, Dan WEI, Chaofang DONG, Kui XIAO. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 159-166.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.012      或      https://www.jcscp.org/CN/Y2020/V40/I2/159

图1  SKP线扫描示意图
图2  焊缝区SEM像和线扫元素分布
图3  焊接区域金相组织
图4  浸泡实验过程中H62黄铜与TC4钛合金焊接件焊缝区域SKP电位分布变化
图5  浸泡不同时间后H62黄铜与TC4钛合金焊接件焊缝区域腐蚀形貌
图6  浸泡实验后焊接试样不同区域的SEM形貌
图7  浸泡实验后H62黄铜表面XPS全谱图
图8  浸泡实验后H62黄铜表面XPS高分辨图谱
图9  浸泡实验后TC4钛合金表面XPS总谱图
图10  浸泡实验后TC4钛合金表面XPS高分辨图谱
[1] Chen C, Wu J J, Zhang D. Effects of sulfate-reducing bacteria on marine corrosion of weld joints of EH40 [J]. Equip. Environ. Eng., 2018, 15(10): 51
[1] (陈超, 吴佳佳, 张盾. 硫酸盐还原菌对EH40焊接钢海水腐蚀的影响 [J]. 装备环境工程, 2018, 15(10): 51)
[2] Zhang X D, Hu Y L, Bu S C, et al. Research progress in seawater corrosion of hull structural steel [J]. Equip. Environ. Eng., 2018, 15(6): 33
[2] (张晓东, 胡裕龙, 卜世超等. 船体钢海水腐蚀研究进展 [J]. 装备环境工程, 2018, 15(6): 33)
[3] Chen P S, Xu Z J. Vacuum diffusion welding [J]. Tube Technol., 1979, 3(8): 33
[3] (陈沛生, 徐志坚. 真空扩散焊 [J]. 电子管技术, 1979, 3(8): 33)
[4] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium alloy [M]. Beijing: Chemical Industry Press, 2005
[4] (Leyens C, Peters M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005)
[5] Li X G. Introduction to Corrosion and Protection of Materials [M]. Beijing: China Machine Press, 2017
[5] (李晓刚. 材料腐蚀与防护概论 [M]. 北京: 机械工业出版社, 2017)
[6] Ji J, Ma X Z. Welding of copper and copper alloy [J]. J. Weld. Technol., 1999, 4(2): 13
[6] (季杰, 马学智. 铜及铜合金的焊接 [J]. 焊接技术, 1999, 4(2): 13)
[7] Sun F L, Li X G, Lu L, et al. Corrosion behavior of copper alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1211
[7] (孙飞龙, 李晓刚, 卢琳等. 铜合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1211)
[8] Wang H J, Wang J, Peng X, et al. Corrosion behavior of three titanium alloys in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 75
[8] (王海杰, 王佳, 彭欣等. 钛合金在3.5%NaCl溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 75)
[9] (Petzow G, translated by Li X X. Metallographisches Atzen [M]. Beijing: Popular Science Press, 1982
[9] Petzow G著, 李新立译. 金相浸蚀手册 [M]. 北京: 科学普及出版社, 1982)
[10] Xiao K, Dong C F, Li X G, et al. Galvanic corrosion evaluation of magnesium alloys coupled with brass alloys studied by scanning Kelvin probe technology [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1023
[10] (肖葵, 董超芳, 李晓刚等. 采用开尔文扫描探针技术研究镁合金偶接铜合金的电偶腐蚀规律 [J]. 北京科技大学学报, 2010, 32: 1023)
[11] An Y H, Dong C F, Xiao K, et al. Progress of application of Kelvin probe technique in studies on electrochemistry [J]. J. Corros. Sci. Prot. Technol., 2008, 20: 440
[11] (安英辉, 董超芳, 肖葵等. Kelvin探针测量技术在电化学研究中的应用进展 [J]. 腐蚀科学与防护技术, 2008, 20: 440)
[12] Wu Z L, Liu J. Progress of new techniques in modern X-ray photoelectron spectroscopy (XPS) [J]. J. Mod. Instrum., 2006, 12: 50
[12] (吴正龙, 刘洁. 现代X光电子能谱 (XPS) 分析技术 [J]. 现代仪器, 2006, 12: 50)
[13] Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potential of metals in natural river water [J]. Equip. Environ. Eng., 2017, 14(2): 31
[13] (丁国清, 杨朝晖, 黄桂桥等. 金属材料在天然河水中的腐蚀电位研究 [J]. 装备环境工程, 2017, 14(2): 31)
[14] Akid R, Mills D J. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion [J]. Corros. Sci., 2001, 43: 1203
[15] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
[15] (王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[16] Xu W. Application of titanium and titanium alloys in the chlor-alkali industry [J]. Chlor-Alkali Ind., 1988, (6): 39
[16] (徐伟. 钛及钛合金在氯碱工业中的应用 [J]. 氯碱工业, 1988, (6): 39)
[17] Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
[17] (黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报,2001, 21: 46)
[18] Wu C S, Zhang Z, Cao F H, et al. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions [J]. Appl. Surf. Sci., 2007, 253: 3893
[19] Wang Z H, Bai Y, Ma X, et al. Numerical simulation of galvanic corrosion for couple of Ti-alloy with Cu-alloy in seawaters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 403
[19] (王振华, 白杨, 马晓等. 钛合金和铜合金管路电偶腐蚀数值仿真 [J]. 中国腐蚀与防护学报, 2018, 38: 403)
[20] Arya C, Vassie P R W. Influence of cathode-to-anode area ratio and separation distance on Galvanic corrosion currents of steel in concrete containing chlorides [J]. Cem. Concr. Res., 1995, 25: 989
[21] Cano E, Torres C L, Bastidas J M. An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity [J]. Mater. Corros., 2001, 52(9): 667
[22] Haupt S, Calinski C, Collisi U, et al. XPS and ISS examinations of electrode surfaces and passive layers with a specimen transfer in a closed system [J]. Surf. Interface Anal., 1986, 9: 357
[23] Watanabe M, Tomita M, Ichino T. Characterization of corrosion products formed on copper in urban, rural/coastal, and hot spring areas [J]. J. Electrochem. Soc., 2001, 148(12): B522
[24] Mezzi A, Angelini E, De Caro T, et al. Investigation of the benzotriazole inhibition mechanism of bronze disease [J]. Surf. Interface Anal., 2012, 44: 968
[25] Kong D C, Dong C F, Fang Y H, et al. Copper corrosion in hot and dry atmosphere environment in Turpan, China [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1721
[26] Langenegger E E, Robinson F P A. The role of arsenic in preventing the dezincification of a-brass [J]. Corrosion, 1969, 25: 137
[27] Namboodhiri T K G, Chaudhary R S, Prakash B, et al. The dezincification of brasses in concentrated ammonia [J]. Corros. Sci., 1982, 22: 1037
[28] Wang R Y. The Corrosion and Its Controlits Control of Seawater Cooling System [M]. Beijing: Chemical Industry Press, 2006
[28] (王日义. 海水冷却系统的腐蚀及其控制 [M]. 北京: 化工工业出版社, 2006)
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[4] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[5] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[6] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[11] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[13] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[14] 赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[15] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.