Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 195-201    DOI: 10.11902/1005.4537.2020.020
  研究报告 本期目录 | 过刊浏览 |
混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响
刘欣怡1,2, 赵亚州1,2(), 张欢1,2, 陈莉1,2
1.河海大学 海岸灾害及防护教育部重点实验室 南京 210098
2.河海大学港口海岸与近海工程学院 南京 210098
Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel
LIU Xinyi1,2, ZHAO Yazhou1,2(), ZHANG Huan1,2, CHEN Li1,2
1.Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai University, Nanjing 210098, China
2.College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
全文: PDF(4027 KB)   HTML
摘要: 

通过动电位极化和恒电位极化研究了Cl-浓度对304不锈钢在模拟混凝土孔隙液 (pH 12.6) 中亚稳态点蚀的影响,并利用极值统计分布研究了亚稳态点蚀的峰值电流密度 (Ipeak),亚稳态点蚀半径 (rpit),亚稳态点蚀稳定性乘积 (Ipeak·rpit) 以及单个亚稳态点蚀的生长时间 (tgrow),再钝化时间 (trep),生长率 (Kgrow) 和再钝化率 (Krep)。结果表明,在碱性介质中,Cl-浓度增加会促使亚稳态点蚀更易转变为稳定点蚀。

关键词 亚稳态点蚀动电位极化恒电位极化304不锈钢    
Abstract

The influence of chloride concentration on metastable pitting of 304 stainless steel in a simulated concrete pore solution (pH 12.6) was investigated via potentiodynamic polarization and potentiostatic polarization measurement. The peak current density (Ipeak), metastable pit radius (rpit), pit stability product (Ipeak·rpit), and growth time (tgrow), as well as the repassivation time (trep), growth rate (Kgrow) and repassivation rate (Krep) of individual metastable pits were studied by means of the extreme value statistics distribution method. The results revealed that the probability of transition from metastable pitting to stable pitting for 304 stainless steel might increase with the increasing chloride concentration in the simulated concrete pore solution.

Key wordsmetastable pitting    potentiodynamic polarization    potentiostatic polarization    304 stainless steel
收稿日期: 2020-02-18     
ZTFLH:  TG172  
基金资助:中央高校基本科研业务费专项资金(B200203003)
通讯作者: 赵亚州     E-mail: yazhou.zhao@hhu.edu.cn
Corresponding author: ZHAO Yazhou     E-mail: yazhou.zhao@hhu.edu.cn
作者简介: 刘欣怡,女,1996年生,硕士生

引用本文:

刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
Xinyi LIU, Yazhou ZHAO, Huan ZHANG, Li CHEN. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 195-201.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.020      或      https://www.jcscp.org/CN/Y2021/V41/I2/195

图1  304不锈钢在含有不同Cl-浓度的混凝土孔隙液中的动电位极化曲线
图2  304不锈钢在含有0.01 mol/L Cl-的混凝土孔隙液中典型电流密度峰值
图3  304不锈钢在含有不同Cl-浓度的混凝土孔隙液中的典型电流密度瞬变
图4  304不锈钢在含有不同Cl-浓度的混凝土孔隙液中的Ipeak极值分布
图5  含有1 mol/L Cl-的模拟混凝土孔隙液中304不锈钢表面亚稳态点蚀形貌
图6  304不锈钢在含有不同Cl-浓度的混凝土孔隙液中亚稳态点蚀半径的极值分布
图7  304不锈钢在含有不同Cl-浓度的混凝土孔隙液中亚稳态点蚀稳定性乘积的极值分布
图8  304不锈钢在含有不同Cl-浓度的混凝土孔隙液中亚稳态点蚀生长时间 (tgrow) 和再钝化时间 (trep) 的极值分布
图9  304不锈钢在含有不同Cl-浓度的混凝土孔隙液中亚稳态点蚀生长率 (Kgrow) 和再钝化率 (Krep) 的极值分布
1 Ngala V T, Page C L, Page M M. Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 2: Sodium monofluorophosphate [J]. Corros. Sci., 2003, 45: 1523
2 Feng X G, Lu X Y, Zuo Y, et al. The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution [J]. Corros. Sci., 2016, 103: 223
3 Pardo A, Otero E, Merino M C, et al. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels [J]. Corrosion, 2000, 56: 411
4 Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
5 Pistorius P C, Burstein G T. Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel [J]. Corros. Sci., 1994, 36: 525
6 Pistorius P C, Burstein G T. Metastable pitting corrosion of stainless steel and the transition to stability [J]. Philos. Trans. Roy. Soc., 1992, 341A: 531
7 Sherry A H, Marrow T J. 1.04-Mechanical Properties and Fracture of Materials [M]. Oxford: Elsevier, 2010
8 Procter R P M. 1. 03-Outline of structural metallurgy relevant to corrosion [A].
8 Cottis B, et al. Shreir's Corrosion [M]. Oxford: Elsevier, 2010
9 Feng X G, Xu Y W, Zhang X Y, et al. A statistical study on metastable pitting of 304 stainless steel in chloride contaminated carbonated concrete pore solution [J]. Int. J. Electrochem. Sci., 2018, 13: 10339
10 Zuo Y, Du H O, Xiong J P. Statistical characteristics of metastable pitting of 316 stainless steel [J]. J. Mater. Sci. Technol., 2000, 16: 286
11 Shang B H, Ma Y T, Meng M J, et al. Feasibility of utilizing 2304 duplex stainless steel rebar in seawater concrete: Passivation and corrosion behavior of steel rebar in simulated concrete environments [J]. Mater. Corros. Werkstoffe Korros., 2019, 70: 1657
12 Wang L W, Tian H Y, Gao H, et al. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment [J]. Appl. Surf. Sci., 2019, 492: 792
13 Zhang Y C, Macdonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
14 Zhao Y Z, Pan T, Yu X T, et al. Corrosion inhibition efficiency of triethanolammonium dodecylbenzene sulfonate on Q235 carbon steel in simulated concrete pore solution [J]. Corros. Sci., 2019, 158: 108097
15 Han X C, Li J, Zhao K Y, et al. Effect of chloride on semiconducting properties of passive films formed on supermartensitic stainless steel in NaHCO3 solution [J]. J. Iron Steel Res. Int., 2013, 20: 74
16 Yang Z X, Kan B, Li J X, et al. A Statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials, 2017, 10: 1307
17 Heakal F E T, Tantawy N S, Shehta O S. Influence of chloride ion concentration on the corrosion behavior of Al-bearing TRIP steels [J]. Mater. Chem. Phys., 2011, 130: 743
18 Sun H, Wu X Q, Han E-H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
19 Liu X H, Han E-H, Wu X Q. Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water [J]. Corros. Sci., 2014, 78: 200
20 Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2014, 85: 372
21 Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials-Review [J]. Corros. Sci., 2015, 90: 5
22 Guan L, Zhou Y, Zhang B, et al. The electrochemical and morphological characteristics of single metastable pit for 304 stainless steel under potentiostatic polarization [J]. Int. J. Electr. Sci., 2016, 11: 2326
23 Ernst P, Newman R C. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition [J]. Corros. Sci., 2002, 44: 943
24 Aghuy A A, Zakeri M, Moayed M H, et al. Effect of grain size on pitting corrosion of 304L austenitic stainless steel [J]. Corros. Sci., 2015, 94: 368
25 Gholami M, Hoseinpoor M, Moayed M H. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel [J]. Corros. Sci., 2015, 94: 156
26 Naghizadeh M, Nakhaie D, Zakeri M, et al. The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel Part II: Pit initiation and transition to stability [J]. Corros. Sci., 2015, 94: 420
27 Nakhaie D, Moayed M H. Pitting corrosion of cold rolled solution treated 17-4 PH stainless steel [J]. Corros. Sci., 2014, 80: 290
28 Asadi Z S, Melchers R E. Extreme value statistics for pitting corrosion of old underground cast iron pipes [J]. Reliab. Eng. Syst. Saf., 2017, 162: 64
29 Melchers R E. Extreme value statistics and long-term marine pitting corrosion of steel [J]. Probab. Eng. Mech., 2008, 23: 482
30 Rivas D, Caleyo F, Valor A, et al. Extreme value analysis applied to pitting corrosion experiments in low carbon steel: Comparison of block maxima and peak over threshold approaches [J]. Corros. Sci., 2008, 50: 3193
31 Shibata T. 1996 W.R. Whitney award lecture: statistical and stochastic approaches to localized corrosion [J]. Corrosion, 1996, 52: 813
32 Aziz P M. Application of the statistical theory of extreme values to the analysis of maximum pit depth data for aluminum [J]. Corrosion, 1956, 12: 495
33 Xiao J. The electrochemical characters of metastable pitting of 316L stainless steel [D]. Beijing: Beijing University of Chemical Technology, 2001
33 肖娟. 316L不锈钢亚稳态孔蚀行为的电化学特征 [D]. 北京: 北京化工大学, 2001
34 Wang Y Y. Research on the early current fluctuation of pitting corrosion [D]. Beijing: Beijing University of Chemical Technology, 2013
34 王燕燕. 小孔腐蚀早期电流波动规律研究 [D]. 北京: 北京化工大学, 2013
35 Heusler K E, Fischer L. Kinetics of pit initiation at the alloy Fe5Cr [J]. Mater. Corros., 1976, 27: 788
36 Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth [J]. J. Electrochem. Soc., 1994, 141: 3028
37 Ilevbare G O, Burstein G T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels [J]. Corros. Sci., 2001, 43: 485
38 Khalil W, Haupt S, Strehblow H H. The thinning of the passive layer of iron by halides [J]. Mater. Corros., 1985, 36: 16
39 Tang Y M, Lin B, Zhao X H, et al. Effect of surface roughness on early stage of pitting corrosion of 316L SS [J]. Corros. Sci. Prot. Technol., 2014, 26: 505
39 唐聿明, 林冰, 赵旭辉等. 粗糙度在316L不锈钢小孔初期生长过程中的作用 [J]. 腐蚀科学与防护技术, 2014, 26: 505
40 Pistorius P C, Burstein G T. Detailed investigation of current transients from metastable pitting events on stainless steel-the transition to stability [J]. Mater. Sci. Forum., 1992, 111/112: 429
41 Frankel G S, Stockert L, Hunkeler F, et al. Metastable pitting of stainless steel [J]. Corrosion, 1987, 43: 429
42 Macdonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
43 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
[1] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[4] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[5] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[7] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[8] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[9] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[10] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[11] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[12] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[13] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[14] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[15] 隋佳利,李相波,林志峰,詹天荣. 两种热喷涂锌铝涂层在低温海水介质中防腐性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 471-475.