Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 523-528    DOI: 10.11902/1005.4537.2019.207
  研究报告 本期目录 | 过刊浏览 |
17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究
马鸣蔚1, 赵志浩2, 荆思文1, 于文峰1, 谷义恩1, 王旭1(), 吴明2
1.辽宁石油化工大学机械工程学院 抚顺 113001
2.辽宁石油化工大学石油天然气工程学院 抚顺 113001
Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB
MA Mingwei1, ZHAO Zhihao2, JING Siwen1, YU Wenfeng1, GU Yien1, WANG Xu1(), WU Ming2
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(10850 KB)   HTML
摘要: 

在硫酸盐还原菌 (SRB) 接种的模拟海洋溶液中,观察并研究了SRB和外加应力对17-4 PH不锈钢腐蚀行为的作用。分析应力-应变曲线和断口形貌,对比在无菌溶液和SRB接种溶液中的腐蚀行为差异。结果表明,与无菌溶液相比,SRB接种溶液中单级时效、双级时效和调质处理试样的ISCC值分别提高了5.2%,9.3%和4.4%。FeS的产生增强了阳极溶解过程并加速了腐蚀反应,双级时效试样组织中粗大的马氏体有利于氢的进入和聚集,增加了试样对SRB的敏感度。单级时效和调质处理试样的应力腐蚀开裂 (SCC) 机理都是阳极溶解 (AD),而双级时效试样是氢致开裂 (HIC)。

关键词 17-4 PH不锈钢热处理应变量SRB应力腐蚀开裂    
Abstract

The effect of sulfate-reducing bacteria (SRB) and applied stress on the corrosion behavior of 17-4 PH stainless steel was studied in a simulated marine solution inoculated with SRB. The stress-strain curves and fracture morphology were analyzed to acquire the differences in corrosion behavior induced by sterile solution and SRB inoculum solution respectively. The results showed that the ISCC values were increased by 5.2%, 9.3%, and 4.4% in the SRB-inoculated solution for the steels subjected to single stage aging, double stage aging and tempering treatments respectively. The corrosion product of FeS enhances the anodic dissolution process and accelerates the corrosion reaction. Double stage aging treated steels are more sensitive to SRB due to the microstructure of coarse martensite, facilitating the entry and accumulation of hydrogen. The stress corrosion cracking (SCC) mechanism for single stage aging and tempering treated steels may be ascribed to the anodic dissolution (AD), while the double-stage aging treated steel may be due to the hydrogen induced cracking (HIC).

Key words17-4 PH stainless steel    heat treatment    strain    SRB    stress corrosion cracking
收稿日期: 2019-11-11     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51574147)
通讯作者: 王旭     E-mail: wangxu@lnpu.edu.cn
Corresponding author: WANG Xu     E-mail: wangxu@lnpu.edu.cn
作者简介: 马鸣蔚,女,2000年生

引用本文:

马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
Mingwei MA, Zhihao ZHAO, Siwen JING, Wenfeng YU, Yien GU, Xu WANG, Ming WU. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 523-528.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.207      或      https://www.jcscp.org/CN/Y2020/V40/I6/523

ValueCMnSiSPCrNiCuNbFe
Nominal≤0.07≤1.00≤1.00≤0.03≤0.0315.0~17.53.00~5.003.00~5.000.15~0.45Bal.
Measured0.040.280.510.0210.02716.04.153.400.30Bal.
表1  17-4 PH不锈钢的化学成分
图1  用于应力腐蚀实验的试样尺寸及实验容器示意图
图2  经不同工艺处理的17-4PH不锈钢的显微组织
图3  经不同工艺热处理的17-4 PH不锈钢试样在不同环境中的应力-应变曲线及断面收缩率
表2  不同热处理后的试样在无菌和SRB接种溶液中的ISCC值
图4  经不同工艺热处理的17-4 PH不锈钢在不同环境中的断口形貌
图5  经不同工艺热处理的17-4 PH不锈钢试样在SRB接种溶液中的侧面断裂形貌
[1] Song J, Curtin W A. A nanoscale mechanism of hydrogen embrittlement in metals [J]. Acta Mater., 2011, 59(4): 1557
doi: 10.1016/j.actamat.2010.11.019
[2] Xu D, Li Y, Gu T. A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 3067
doi: 10.1007/s11274-012-1116-0 pmid: 22806745
[3] Li F S, An M Z, Liu G Z, et al. Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel [J]. Acta Metall. Sin., 2009, 45: 536
[3] (李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌对18-8不锈钢点蚀行为的影响 [J]. 金属学报, 2009, 45: 536)
[4] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[5] Domżalicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2015, 58: 413
[6] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953
[7] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
doi: 10.1016/j.ibiod.2014.03.014
[8] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
pmid: 25023048
[9] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
pmid: 27071053
[10] Zhao Z H, Wang X, Wu M. Effect of heat treatment on corrosion resistance of 05Cr17Ni4Cu4Nb steel [J]. Heat Treat. Met., 2018, 43(12): 109
[10] (赵志浩, 王旭, 吴明. 热处理对05Cr17Ni4Cu4Nb钢耐蚀性的影响 [J]. 金属热处理, 2018, 43(12): 109)
[11] Wu M, Zhao Z H, Wang X, et al. Synergistic effects of a sulfate-reducing bacteria and an applied stress on the corrosion behavior of 17-4 PH stainless steel after different heat treatments[J]. Int. J. Electrochem. Sci., 2020, 15: 208
[12] Liu R L, Yan M F, Qiao Y J, et al. Heat treatment and tensile properties of martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(2): 87
[12] (刘瑞良, 闫牧夫, 乔英杰等. 马氏体不锈钢热处理及其拉伸性能 [J]. 金属热处理, 2013, 38(2): 87)
[13] Ziewiec A, Zielińska-Lipiec A, Tasak E. Microstructure of welded joints of x5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment [J]. Arch. Metall. Mater., 2014, 59(3): 965
[14] Deng D W, Chen R, Tian X, et al. Influence of heat treatment on microstructure and properties of 17-4PH martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(4): 32
[14] (邓德伟, 陈蕊, 田鑫等. 热处理对17-4PH马氏体不锈钢显微组织及性能的影响 [J]. 金属热处理, 2013, 38(4): 32)
[15] Delafosse D, Magnin T. Hydrogen induced plasticity in stress corrosion cracking of engineering systems [J]. Eng. Fract. Mech., 2001, 68: 693
[16] Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22
[17] Torres-Islas A, González-Rodríguez J G. Effect of electrochemical potential and solution concentration on the SCC behaviour of X-70 pipeline steel in NaHCO3 [J]. Int. J. Electrochem. Sci., 2009, 4: 640
[18] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution [J]. Corros. Sci., 2008, 50: 3116
[19] Wang D, Xie F, Wu M, et al. Stress corrosion cracking behavior of X80 pipeline steel in acid soil environment with SRB [J]. Metall. Mater. Trans., 2017, 48A: 2999
[20] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169
[21] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
doi: 10.1016/j.ibiod.2014.05.007
[22] Casanova T, Crousier J. The influence of an oxide layer on hydrogen permeation through steel [J]. Corros. Sci., 1996, 38: 1535
doi: 10.1016/0010-938X(96)00045-5
[23] Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[3] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[4] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[5] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[6] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[8] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[9] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[10] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[11] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[12] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[13] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[14] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[15] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.