Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 17-24    DOI: 10.11902/1005.4537.2019.221
  研究报告 本期目录 | 过刊浏览 |
316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀
何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春()
长沙理工大学化学与食品工程学院 长沙 410114
Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment
HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun()
School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
全文: PDF(3950 KB)   HTML
摘要: 

基于自行设计组装的盐酸液膜腐蚀模拟装置,采用腐蚀挂片、电阻探针、Tafel极化、电化学阻抗等方法,研究了316L和HR-2不锈钢在浓度分别为1、0.5和0.1 mol/L,温度分别为90、70和60 ℃的盐酸蒸汽环境中的钝化和点蚀行为,并利用金相显微镜、XRD对腐蚀试样和腐蚀产物进行了分析。结果表明:两种不锈钢的腐蚀速率随时间先加快后减慢最后趋于稳定,316L不锈钢的腐蚀速率相对较高;两种不锈钢均能形成稳定钝化区,且维钝电流密度相差不大,HR-2孔蚀电位的钝化区间总体都比316L不锈钢高,说明HR-2不锈钢更耐腐蚀;另外,两种不锈钢表面腐蚀产物成分基本相同,316L不锈钢表面的腐蚀产物更多更密集,这是由于O的吸附被C1-所取代,钢体表面上的钝化膜难以形成或破坏,并且更可能导致不锈钢点蚀。

关键词 不锈钢液膜环境模拟装置电化学测试钝化与点蚀表征及分析    
Abstract

With a home-made facility, the corrosion behavior of 316L and HR-2 stainless steels at 60~90 ℃ beneath thin films of condensate HCl steam of 1, 0.5 and 0.1 mol/L HCl solutions was assessed by means of mass loss method, resistance probe, Tafel polarization measurement, electrochemical impedance spectroscopy, metallographic microscope and XRD. Results show that the corrosion rate of the two stainless steels accelerates with time in the initial stage, then slows down and finally stabilizes. The corrosion rate of 316L is faster. Both stainless steels can form stable passivation zone with more or less the same maintaining passivity current densities. The passivation interval of the HR-2 steel is higher than that of 316L steel, indicating that former is more resistant to corrosion. In addition, the corrosion products of the two stainless steel surfaces are basically the same, however, the corrosion product on the 316L steel is much dense. Due to the fact that the oxygen in the corrosion product scale is replaced by the competition of Cl-, correspondingly, the passivation film on the surface of the steel may tend to crack and be difficult to be healed, therefore, pitting corrosion may be initiated of the stainless steels.

Key wordsstainless steel    liquid film environment    simulation device    electrochemical test    passivation and pitting    characterization and analysis
收稿日期: 2019-05-16     
ZTFLH:  TG174  
通讯作者: 李宇春     E-mail: iamlyc@263.net
Corresponding author: Yuchun LI     E-mail: iamlyc@263.net
作者简介: 何壮,男,1994年生,硕士生

引用本文:

何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
Zhuang HE, Xingping WANG, Zihan LIU, Yaoquan SHENG, Mengxin MI, Lin CHEN, Yan ZHANG, Yuchun LI. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 17-24.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.221      或      https://www.jcscp.org/CN/Y2020/V40/I1/17

图1  电化学测试实验装置
SteelCSiMnPSCrNiMoNFe
316L0.0210.5121.3910.0280.00316.8812.652.10.012Bal.
HR-20.0330.2309.2350.0050.00419.307.40---0.320Bal.
表1  两种不锈钢的化学成分 (mass fraction / %)
SampleT / ℃Ecorr / VEm / VEb / VPassive potential range / VIp / A·cm-2d / mm·a-1
316L900.1620.2382.1630.383~2.1630.2260.049
700.4090.6951.2820.695~1.2820.2070.038
600.4680.7381.4940.738~1.494-0.3540.008
HR-2900.4480.5681.4830.568~1.483-5.9160.485
700.5860.7661.5560.766~1.556-0.8220.024
600.7200.8701.7080.870~1.708-0.1620.008
表2  316L和HR-2不锈钢在1 mol/L HCl溶液不同温度的Tafel拟合数据
SampleT / ℃Ecorr / VEm / VEb / VPassive potential range / VIp / A·cm-2d / mm·a-1
316L900.3830.5711.4300.571~1.4300.2200.066
700.5140.7221.4410.722~1.4410.2410.030
600.5840.6061.4700.606~1.4700.2820.001
HR-2900.4480.5681.4830.568~1.483-5.9160.485
700.2660.5061.1600.506~1.160-0.0560.141
600.3180.6771.2210.677~1.2210.0010.035
表3  316L和HR-2不锈钢在0.5 mol/L HCl溶液不同温度的Tafel拟合数据
SampleT / ℃Ecorr / VEm / VEb / VPassive potential range / VIp / A·cm-2d / mm·a-1
316L900.0070.0921.0180.092~1.0180.2200.220
700.4800.6311.5600.631~1.5600.2140.112
600.6170.7771.5500.777~1.5500.1820.030
HR-2900.5630.9731.5850.973~1.5850.2200.152
700.7190.9891.7430.989~1.7430.1960.102
600.7420.9921.3170.992~1.3170.0670.001
表4  316L和HR-2不锈钢在0.1 mol/L HCl溶液中不同温度Tafel拟合数据
图2  电化学阻抗谱的等效电路图
图3  316L和HR-2不锈钢在1 mol/L 90、70和60 ℃ HCl溶液中的电化学阻抗图
图4  316L和HR-2不锈钢在0.5 mol/L 90、70和60 ℃ HCl溶液中的电化学阻抗图
图5  316L和HR-2不锈钢在0.1 mol/L 90、70和60 ℃ HCl溶液中的电化学阻抗图
图6  两种材料在1和0.5 mol/L HCl溶液中不同模拟时间后的腐蚀动力学曲线
图7  两种材料电阻探针在1和0.5 mol/L HCl溶液中不同模拟时间后的腐蚀动力学曲线
图8  两种材料在0.5 mol/L HCl溶液中腐蚀24、96和144 h后的金相形貌
图9  316L和HR-2不锈钢0.5 mol/L HCl溶液中腐蚀144 h的XRD谱
[1] Wang Y L, Chen X, Wang J D, et al. Electrochemical behavior of 316L stainless steel in borate buffer solution with different pH [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 162
[1] (王彦亮, 陈旭, 王际东等. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 162)
[2] Zhou D, Yang S C, Hou Y B. Cause analysis on corrosion and perforation for condenser of 316L stainless steel pipe [J]. Northeast Electr. Power Technol., 2016, 37(9): 24
[2] (周多, 杨少才, 侯亚波. 凝汽器316L不锈钢管腐蚀穿孔原因分析 [J]. 东北电力技术, 2016, 37(9): 24)
[3] Chen Y, Chen X, Liu T, et al. Effect of potential on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 137
[3] (陈宇, 陈旭, 刘彤等. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 137)
[4] Yang L Q, Liu D X, Xie C Y, et al. Corrosion behavior of 316L and HR-2 stainless steels in ferric chloride solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 117
[4] (杨柳青, 刘道新, 谢朝阳等. 氯化铁溶液中316L和HR-2不锈钢的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 117)
[5] Lei H D, Huang W R, Guo P, et al. Preliminary inquiry of weldability and formation reason of porosity for laser beam welding of hydrogen resistant stainless steel [J]. Weld. Technol., 2002, 31(3): 8
[5] (雷华东, 黄文荣, 郭鹏等. 抗氢不锈钢的激光焊接性及气孔成因初探 [J]. 焊接技术, 2002, 31(3): 8)
[6] Zuo Y, Wang H T, Zhao J M, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. Corros. Sci., 2002, 44: 13
[7] Liu X H, Wu X Q, Han E-H. Effects of temperature on lectrochemical corrosion of domestic nuclear-grade 316L stainless steel in Zn-injected aqueous environment [J]. Acta Metall. Sin., 2014, 50: 64
[7] (刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响 [J]. 金属学报, 2014, 50: 64)
[8] Li Y Y, Fan C G, Rong L J, et al. Hydrogen embrittlement resistance of austenitic alloys and aluminium alloys [J]. Acta Metall. Sin., 2010, 46: 1335
[8] (李依依, 范存淦, 戎利建等. 抗氢脆奥氏体钢及抗氢铝 [J]. 金属学报, 2010, 46: 1335)
[9] Tseng C M, Tsai W T. Environmentally assisted cracking behavior of single and dual phase stainless steels in hot chloride solutions [J]. Mater. Chem. Phys., 2004, 84: 162
[10] Han M S, Park J C, Jang S K, et al. Effects of applied potential on SCC and HE for STS 316L in seawater [J]. Phys. Scr., 2010, 139: 014037
[11] Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
[12] Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth [J]. J. Electrochem. Soc., 1994, 141: 3028
[13] Chen Z, Yu Q, Liao D H, et al. Surface activity of HR-2 stainless steel in acid solution with SECM [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 54
[13] (陈阵, 余强, 廖登辉等. 酸性介质中HR-2不锈钢表面活性的SECM三维图像表征研究 [J]. 中国腐蚀与防护学报, 2013, 33: 54)
[14] Feng X G, Zuo Y, Tang Y M, et al. The degradation of passive film on carbon steel in concrete pore solution under compressive and tensile stresses [J]. Electrochim. Acta, 2011, 58: 258
[15] Tan H L, Zhou C, Liu X H, et al. Effect of Cr on corrosion resistance of Q420 steel in atmosphere with high salinity [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 267
[15] (谭何灵, 周成, 刘希辉等. Cr对Q420钢在高盐度大气环境下耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 267)
[16] Liu Z Y, Du C W, Zhang X, et al. Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment [J]. Acta Metall. Sin. (Engl. Lett)., 2013, 26: 489
[17] Marshakov A I, Ignatenko V E, Bogdanov R I, et al. Effect of electrolyte composition on crack growth rate in pipeline steel [J]. Corros. Sci., 2014, 83: 209
[18] Pokhmurs'kyi V I. Adsorption-electrochemical theory of the corrosion fatigue of metals [J]. Mater. Sci., 2010, 46: 156
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[4] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[7] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[10] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[11] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[12] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[15] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.