Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 39-50    DOI: 10.11902/1005.4537.2021.034
Current Issue | Archive | Adv Search |
Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating
GAO Haodong1, CUI Yu2, LIU Li1, MENG Fandi1(), LIU Rui2, ZHENG Hongpeng1, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(14269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The failure behavior of epoxy glass flake coating in artificial seawater of various states, namely atmospheric static (0.1 MPa-0 m/s), atmospheric flowing (0.1 MPa-4 m/s), high hydrostatic pressure (10 MPa-0 m/s) and pressured-flowing (10 MPa-4 m/s) was studied by means of water absorption test, EIS, adhesion test, SEM, FT-IR, etc. The results indicated that, under the action of pressured-flowing artificial seawater, the interfacial bonding strength between pigments with the coating matrix may be significantly weakened, the structure of the coating is severely damaged, which promotes the diffusion of corrosive media in the coating, and in consequence, a large amount of water accumulates in coating defects and the interface of coating/metal, which result in significant increase in the water absorption rate and severe decrease in mechanical properties, as well as in rapid loss of coating adhesion and bubbling of the coating, as a result, the coating fails quickly. Finally, the failure mechanism of organic coatings induced by pressured-flowing artificial seawater was also discussed.

Key words:  pressure-flow velocity coupling environment      epoxy glass flake coating      diffusion      EIS      interface      physical structure      bubbling      failure     
Received:  26 February 2021     
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2017YFB0702303)
Corresponding Authors:  MENG Fandi     E-mail:  fandimeng@mail.neu.edu.cn
About author:  MENG Fandi, E-mail: fandimeng@mail.neu.edu.cn

Cite this article: 

GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 39-50.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.034     OR     https://www.jcscp.org/EN/Y2022/V42/I1/39

Fig.1  Schematic diagram of coating/steel system
Fig.2  Schematic diagram of the ocean simulation device
Fig.3  Water absorption curves for the free film samples under 0.1 MPa-0 m/s, 0.1 MPa-4 m/s, 10 MPa-0 m/s and 10 MPa-4 m/s environment
Fig.4  Fitting results of water absorption for epoxy glass flake coating under 0.1 MPa-0 m/s, 0.1 MPa-4 m/s, 10 MPa-0 m/s and 10 MPa-4 m/s environment
Fig.5  Electrochemical impedance spectroscopy of the coating/steel system immersed in 0.1 MPa-0 m/s: (a, b) Nyquist plots, (c, d) Bode plots
Fig.6  Equivalent electrical circuits of the coating/steel system: (a) model A, (b) model B, (c) model C
Fig.7  Nyquist (a~c, f~h) and Bode (d, e, i, g) plots of coating/steel system immersed in 0.1 MPa-4 m/s (a~e) and 10 MPa-0 m/s environment (f~j)
Fig.8  Nyquist (a~c) and Bode (d, e) plots of the coating/steel system immersed in 10 MPa-4 m/s
Fig.9  |Z| (0.01 Hz) curves as a function of immersion time under different environment
Fig.10  Coating resistance (a) and charge-transfer resistance (b) curves as a function of immersion time under different environment
Fig.11  Macro morphologies of the coating after immersion for 120 h in dry (a), 0.1 MPa-0 m/s (b), 10 MPa-0 m/s (c), 0.1 MPa-4 m/s (d) and 10 MPa-4 m/s (e)
Fig.12  Adhesion of the coating after 24 and 120 h immer-sion in different environments
Fig.13  SEM images of the coating surface after immersing for 120 h under different environment: (a) 0.1 MPa-0 m/s, (b) 10 MPa-0 m/s, (c) 0.1 MPa-4 m/s, (d) 10 MPa-4 m/s
Fig.14  Coating surface image (a) and EDS maps (b, c) after 120 h immersion in 10 MPa-4 m/s environment
Fig.15  FT-IR spectra of dry coatings and coatings after 120 h immersion in different environments
Fig.16  Mechanical properties of coatings and coatings after 120 h immersion in different environments
Fig.17  SEM images of the coating tensile fracture after immersing for 120 h under different environment: (a) 0.1 MPa-0 m/s, (b) 10 MPa-0 m/s, (c) 0.1 MPa-4 m/s, (d) 10 MPa-4 m/s
Fig.18  Schematic failure process of the glass flake/epoxy composite coating under 10 MPa-4 m/s environment: (a) earlier stage, (b) later stage
1 Feng S Z, Li F Q, Li S J. An Introduction to Marine Science [M]. Beijing: Higher Education Press, 1999
冯士筰, 李凤岐, 李少菁. 海洋科学导论 [M]. 北京: 高等教育出版社, 1999
2 Gao Y B, Li H Q, Chai Y P, et al. The development of deep ocean high technology [J]. Ocean Technol., 2010, 29(3): 119
高艳波, 李慧青, 柴玉萍等. 深海高技术发展现状及趋势 [J]. 海洋技术, 2010, 29(3): 119
3 Hou B R. The Theory and Application of Marine Corrosion Environment [M]. Beijing: Science Press, 1999
侯保荣. 海洋腐蚀环境理论及其应用 [M]. 北京: 科学出版社, 1999
4 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
5 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
6 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
师超, 邵亚薇, 熊义等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
7 Corfias C, Pébère N, Lacabanne C. Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method: Influence of the polymer binder [J]. Corros. Sci., 2000, 42: 1337
8 Zhang J T. Electrochemical investigation on water transport behavior of organic coatings and degradation mechanism of coated-metals [J]. Hangzhou: Zhejiang University, 2005
张金涛. 有机涂层中水传输与涂层金属失效机制的电化学研究 [D]. 杭州: 浙江大学, 2005
9 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
曹京宜, 王智峤, 李亮等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
10 Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behavior of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
11 Liu J, Li X B, Wang J, et al. Studies of impedance models and water transport behaviours of epoxy coating at hydrostatic pressure of seawater [J]. Prog. Org. Coat., 2013, 76: 1075
12 Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
13 Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
14 Tian W L, Liu L, Meng F D, et al. The failure behavior of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
15 Wang Y C, Bierwagen G P. A new acceleration factor for the testing of corrosion protective coatings: Flow-induced coating degradation [J]. J. Coat. Technol. Res., 2009, 6: 429
16 Wei Y H, Zhang L X, Ke W. Comparison of the degradation behaviour of fusion-bonded epoxy powder coating systems under flowing and static immersion [J]. Corros. Sci., 2006, 48: 1449
17 Zhou Q X, Wang Y C, Bierwagen G P. Flow accelerated degradation of organic clear coat: The effect of fluid shear [J]. Electrochim. Acta, 2014, 142: 25
18 Ruzic V, Veidt M, Nešić S. Protective iron carbonate films-Part 1: Mechanical removal in single-phase aqueous flow [J]. Corrosion, 2006, 62: 419
19 van der Wel G K, Adan O C G. Moisture in organic coatings-a review [J]. Prog. Org. Coat., 1999, 37: 1
20 Pitarresi G, Scafidi M, Alessi S, et al. Absorption kinetics and swelling stresses in hydrothermally aged epoxies investigated by photoelastic image analysis [J]. Polym. Degrad. Stabil., 2015, 111: 55
21 Jackson M, Kaushik M, Nazarenko S, et al. Effect of free volume hole-size on fluid ingress of glassy epoxy networks [J]. Polymer, 2011, 52: 4528
22 Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
23 Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
24 Shi C, Shao Y W, Wang Y Q, et al. Influence of submicro-sheet zinc phosphate modified by urea-formaldehyde on the corrosion protection of epoxy coating [J]. Surf. Interfaces, 2019, 18: 100403
25 Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
26 Liang P P, Bao H M, Yang J F, et al. Preparation of porous graphene oxide-poly (urea-formaldehyde) hybrid monolith for trypsin immobilization and efficient proteolysis [J]. Carbon, 2016, 97: 25
27 Zheng H P, Shao Y W, Wang Y Q, et al. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly (urea-formaldehyde) composites [J]. Corros. Sci., 2017, 123: 267
28 Nogueira P, Ramírez C, Torres A, et al. Effect of water sorption on the structure and mechanical properties of an epoxy resin system [J]. J. Appl. Polym. Sci., 2001, 80: 71
29 Gabe D R, Wilcox G D, Gonzalez-Garcia J, et al. The rotating cylinder electrode: its continued development and application [J]. J. Appl. Electrochem., 1998, 28: 759
[1] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[2] CHEN Xuandong, ZHANG Qing, GU Xin, LI Xing. Probability Analysis on Service Life Prediction of Reinforced Concrete Structures[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[3] MA Shide, LIU Xin, WANG Zaidong, REN Yadong, TAI Yu, HAN Wen, DUAN Jizhou. Characterization of Seawater Corrosion Interface of Zinc Coated Steel Plate in Zhong-gang Harbor[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[4] LV Xianghong, MA Xiaofeng, HU Zhaowei, LI Yuanyuan, WANG Chen. Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[5] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[6] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[7] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[8] LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe, WANG Chao. Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[9] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[12] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[13] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[14] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[15] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
No Suggested Reading articles found!