Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 389-394    DOI: 10.11902/1005.4537.2020.088
Current Issue | Archive | Adv Search |
Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution
LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe(), WANG Chao
Institute of Flow Induced Corrosion, Zhejiang Sci-tech University, Hangzhou 310018, China
Download:  HTML  PDF(2549KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The air cooler process with lean amine liquid was computationally simulated by means of Kent-Eisenberg (KE) model, while the variations of heat-stable salt, organic acid, CO2 and other corrosive media during the cooling process in the temperature range of 83.40 ℃ to 41.96 ℃ were analyzed by means of soft wear Aspen plus. The results show that although the gas phase fraction of the first three rows of air cooler tube bundles is small, but within the gas phase, the molar fraction of heat-stable salt and CO2 is 55% and 45%, respectively, in fact, which may be the key hazard source for corrosion of air cooler tube bundles. Following the analysis results of the flow characteristics in air-cooled tube bundles, it follows that the high-risk corrosion regions are located at the second row tube bundles of the air cooler, namely, the tube number No.9~12, 20, 21, 24, 27~40, which are consistent with the actual corrosion locations of the tube bundle during the operation of the air cooler with lean amine liquid in the factory.

Key words:  heat-stabilized salt      CO2 removal      Kent-Eisenberg (KE) model      lean amine liquid air cooler      corrosion     
Received:  20 May 2020     
ZTFLH:  TE624  
Fund: National Key R&D Program of China(2017YFF0210403);National Natural Science Foundation of China(U1909216)
Corresponding Authors:  JIN Haozhe     E-mail:  haozhe2007@163.com
About author:  JIN Haozhe, E-mail: haozhe2007@163.com

Cite this article: 

LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe, WANG Chao. Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 389-394.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.088     OR     https://www.jcscp.org/EN/Y2021/V41/I3/389

Fig.1  Process flow diagram of MDEA CO2 removal system
Chemical equationEquilibrium constant equation
RR'NH2+K1H++RR'NHK1=c(H+)c(RR'NH2+)
RR'NCOO-+H2OK2RR'NH+HCO3-K2=c(HCO3-)c(RR'NCOO-)
H2O+CO2K3H++HCO3-K3=c(H+)c(HCO3-)c(CO2)
H2OK4H++OH-K4=c(H+)c(OH-)
HCO3-K5H++CO32-K5=c(H+)c(CO32-)c(HCO3-)
H2SK6H++HS-K6=c(H+)c(HS-)c(H2S)
HS-K7H++S2-K7=c(H+)c(S2-)c(HS-)
Table 1  Chemical reaction of H2S-CO2-amine solution equilibrium system
Fig.2  Process simulation model: LMDEA-lean amine solution, DF-defoamer, mix-mixer, AC-air cooler, FEEDGAS-into tower syngas, AB-absorber,GAS-gas, RMDEA-rich amine solution
Fig.3  Diagram comparing simulated data with actual data
Fig.4  Corrosion mechanism diagram of amine solution absorption process
Fig.5  Variation law of gas-liquid two-phase flow rate with temperature
Fig.6  Temperature variation of HSS and CO2 in the gas phase
Fig.7  Changes of molar fraction of organic acids and H2O with temperature in the gas phase
Fig.8  Changes of molar fraction of HSS and CO2 with temperature in the liquid phase
Fig.9  Changes of molar fraction of H2O and organic acids with temperature in liquid phase
Fig.10  Cloud diagram of water phase volume fraction distribution
Fig.11  Statistical diagram of gas phase fraction of each row of tube bundles in an air cooler
1 Liu F, Li S H, Zhao Y J. The use of MDEA and DEA blended solution in Changqin oilfield [J]. Petrol. Instrum., 2006, 20(3): 81
刘峰, 李曙华, 赵玉君. MDEA、DEA混合溶液在长庆油田的使用评估 [J]. 石油仪器, 2006, 20(3): 81
2 Singto S, Supap T, Idem R, et al. The effect of chemical structure of newly synthesized tertiary amines used for the post combustion capture process on carbon dioxide (CO2): Kinetics of CO2 absorption using the stopped-flow apparatus and regeneration, and heat input of CO2 regeneration [J]. Energy Procedia., 2017, 114: 852
3 Zhang N, Pan Z, Zhang L, et al. Decarburization characteristics of coalbed methane by membrane separation technology [J]. Fuel, 2019, 242: 470
4 Rooney P C, DuPart M S, Bacon T R. Effect of heat stable salts on MDEA solution corrosivity [J]. Hydrocarb. Process., 1997, 76: 65
5 Luo F. Determination of heat stable salts amine by solid-phase extraction coupled with ion chromatography [J]. J. Instrum. Anal., 2004, 23(4): 84
罗芳. 固相萃取-离子色谱法分析胺液中的热稳态盐离子组成 [J]. 分析测试学报, 2004, 23(4): 84
6 Wu G L, Wang K Y. Discussion about application of methyldiethanolamine desulfurization process [J]. Special. Petrochem., 2004, (6): 37
吴国良, 王开岳. 关于N-甲基二乙醇胺法脱硫工艺的探讨 [J]. 精细石油化工, 2004, (6): 37
7 Cummings A L, Mecum S M. Remove heat stable salts for better amine plant performance [J]. Hydrocarb. Process., 1998, 77: 63
8 Borhani T N G, Afkhamipour M, Azarpour A, et al. Modeling study on CO2 and H2S simultaneous removal using MDEA solution [J]. J. Ind. Eng. Chem., 2016, 34: 344
9 Yan X Q, Li J, Peng Z C, et al. Study on the effect of Heat stable salts on MDEA solution's decarbonization and desulfurization performance [J]. Chem. Eng. Oil Gas, 2010, 39: 294
颜晓琴, 李静, 彭子成等. 热稳定盐对MDEA溶液脱硫脱碳性能的影响 [J]. 石油与天然气化工, 2010, 39: 294
10 Hamada M, Zewail T, Farag H. Study of corrosion behaviour of A106 carbon steel absorber for CO2 removal in amine promoted hot potassium carbonate solution (Benfield solution) [J]. Corros. Eng. Sci. Technol., 2013, 49: 209
11 He S, Gao C Y, Zhang L. Research progress on corrosion of carbon steel during process of capture CO2 with Monoethanolamine solution [J]. Corros. Sci. Prot. Technol., 2018, 30: 454
贺三, 高超洋, 张岭. MEA捕集CO2腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 454
12 Ghiasi M M, Abedi-Farizhendi S, Mohammadi A H. Modeling equilibrium systems of amine‐based CO2 capture by implementing machine learning approaches [J]. Environ. Prog. Sustain. Energy, 2019, 38: 13160
13 Ghiasi M M, Mohammadi A H. Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions [J]. J. Nat. Gas Sci. Eng., 2014, 18: 39
14 Panahi H, Eslami A, Golozar M A. Corrosion and stress corrosion cracking initiation of grade 304 and 316 stainless steels in activated Methyl Diethanol Amine (aMDEA) solution [J]. J. Nat. Gas Sci. Eng., 2018, 55: 106
15 Fan Y L. Application of Aspen Plus in decarbonization of MDEA amine solution [J]. Chem. Eng. Des., 2019, 29(3): 8
樊义龙. Aspen Plus在MDEA胺液脱碳过程中的应用 [J]. 化工设计, 2019, 29(3): 8
16 Ma Y, Zhang J L, Wang X X, et al. Simulation of natural gas methyldiethanolamine decarbonization and desulphurization process [J]. Chem. Eng., 2015, 43(4): 69
马云, 张吉磊, 王新星等. 天然气甲基二乙醇胺法脱硫脱碳工艺过程模拟分析 [J]. 化学工程, 2015, 43(4): 69
17 Xiao L, Chen N, Liu S, et al. Experiments and modeling of vapor-liquid equilibrium data in DEEA-CO2-H2O system [J]. Int. J. Greenh. Gas Control, 2016, 53: 160
[1] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[2] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[3] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[4] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[5] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[6] CHEN Wen, HUANG Dexing, WEI Feng. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[7] ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[8] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[9] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[10] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[11] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[12] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[13] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[14] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[15] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
No Suggested Reading articles found!