|
|
Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings |
SUN Weisong1,2, YU Sirong1(), GAO Song3, YAO Xinkuan2, XU Hailiang2, QIAN Bing2, WANG Bingzi2 |
1.School of Meterials Science and Engineering, China University of Petroleum, Qingdao 266580, China 2.Zibo Institute of Special Equipment Inspection, Zibo 255000, China 3.Shandong Te'an Special Equipment Inspection and Testing Co. Ltd. , Heze 274000, China |
|
|
Abstract A model of graphene-enhanced DGEBA/3,3'-DDS cross-linked epoxy resin was established by Materials Studio software, and the diffusion process of water molecules in the anticorrosive coating of graphene-reinforced epoxy resin with different amount of graphene (0%,1.1%,2.3%,3.0%,4.2% and 5.8%,in mass fraction) was studied by molecular dynamics simulation method, aiming to search the theoretical guidance for the actual modification of epoxy resin coating. The results show that the water molecules are present within epoxy resin as two forms, namely the hydrogen bonded "bound water" and "free water" in internal micropores. The migration of water molecules in epoxy resin is mainly accomplished by the diffusion process of “free water” and the diffusion coefficient increased with the increase of temperature. The introduction of graphene makes the mean square displacement of water molecules more stable during the whole simulation process, which improved the barrier property of epoxy resin. In sum, the epoxy resin with addition of 4.2% graphene presented the best barrier performance.
|
Received: 06 November 2020
|
|
Corresponding Authors:
YU Sirong
E-mail: yusr@upc.edu.cn
|
About author: YU Sirong, E-mail: yusr@upc.edu.cn
|
1 |
Lv F C, Fu K X, Zhang L, et al. Molecular dynamics simulation of the effect of crosslink density on thermomechanical properties of acid anhydride cured epoxy resin [J]. J. North China Electr. Power Univ., 2019, 46(6): 1
|
|
律方成, 付可欣, 张磊等. 交联度对酸酐固化环氧树脂热机械性能影响的分子动力学模拟 [J]. 华北电力大学学报 (自然科学版), 2019, 46(6): 1
|
2 |
Fu H B, Liu X R, Sun Y, et al. Corrosion resistance of epoxy resin/recrystallized silicon carbide composite [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 373
|
|
付海波, 刘晓茹, 孙媛等. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 373
|
3 |
Han Z Y, Zou L, Ji X Q, et al. Molecular dynamics simulation of epoxy resin/carbon nanotube composites in basin insulators [J]. High Voltage Apparat., 2018, 54(5): 49
|
|
韩智云, 邹亮, 季笑庆等. 盆式绝缘子环氧树脂/碳纳米管复合材料的分子动力学模拟 [J]. 高压电器, 2018, 54(5): 49
|
4 |
Yu H P, Pi B S, Chen P, et al. Thermal and mechanical properties of crosslinked epoxy based on molecular dynamics [J]. J. Beijing Univ. Technol., 2019, 45: 322
|
|
宇慧平, 皮本松, 陈沛等. 交联环氧树脂热力学性能的分子模拟 [J]. 北京工业大学学报, 2019, 45: 322
|
5 |
Kwon S Y, Lee M Y, Yang S. Molecular dynamics approach on the hygroelastic behavior of epoxy/graphene nanocomposites [J]. J. Mechan. Sci. Technol., 2019, 33: 741
|
6 |
Geng H Z, Geng W M, Li G F. Friction and wear behavior of carbon nanotube/epoxy composites [J]. J. Xuzhou Inst. Technol. (Nat. Sci. Ed.), 2018, 33(2): 41
|
|
耿宏章, 耿文铭, 李广芬. 碳纳米管/环氧树脂复合材料摩擦磨损性能 [J]. 徐州工程学院学报 (自然科学版), 2018, 33(2): 41
|
7 |
Tian H W, Li W H, Zong C Z, et al. Anti-corrosion properties of epoxy coatings modified by nano-SiO2 [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 365
|
|
田惠文, 李伟华, 宗成中等. 纳米SiO2改性环氧涂层的防腐性能 [J]. 中国腐蚀与防护学报, 2009, 29: 365
|
8 |
Xu Z R, Gao Y L. Simulation calculation on density and dihedral torsion energy of epoxy resin [J]. Chem. Propell. Polym. Mater., 2014, 12(4): 71
|
|
徐作瑞, 高云亮. 环氧树脂密度与二面角扭转能的仿真计算 [J]. 化学推进剂与高分子材料, 2014, 12(4): 71
|
9 |
Cao W W, Jing L C, Geng W M, et al. Preparation of functionalized graphene oxide and its application in anticorrosive coatings [J]. J. Xuzhou Inst. Technol. (Nat. Sci. Ed.), 2019, 34(3): 82
|
|
曹伟伟, 景立超, 耿文铭等. 功能化氧化石墨烯制备及其在防腐涂层中的应用 [J]. 徐州工程学院学报 (自然科学版), 2019, 34(3): 82
|
10 |
Zuo Y Z, Chen L, Zhu B, et al. Properties of graphene oxide loaded by nano-ZnO/epoxy resin composites [J]. J. Mater. Eng., 2018, 46(5): 22
|
|
左银泽, 陈亮, 朱斌等. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究 [J]. 材料工程, 2018, 46(5): 22
|
11 |
Du L G, Jiao P Y, Wang X M. Structural modeling of epoxy resin and simulation calculation of glass transition temperature [J]. Insulat. Mater., 2012, 45(2): 44
|
|
杜灵根, 焦丕玉, 王晓梅. 环氧树脂结构建模及玻璃化转变温度模拟计算 [J]. 绝缘材料, 2012, 45(2): 44
|
12 |
Büyüköztürk O, Buehler M J, Lau D, et al. Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface [J]. Int. J Solids Struct., 2011, 48: 2131
|
13 |
Wu C F, Xu W J. Atomistic molecular modelling of crosslinked epoxy resin [J]. Polymer, 2006, 47: 6004
|
14 |
Yaphary Y L, Yu Z C, Lam R H W, et al. Molecular dynamics simulations on adhesion of epoxy-silica interface in salt environment [J]. Composites, 2017, 131B: 165
|
15 |
Li H, Fan X P, Yue S L, et al. Molecular dynamics simulation of water diffusion in epoxy resin [J]. Comput. Appl. Chem., 2014, 31: 697
|
|
李惠, 范小平, 岳淑丽等. 水在环氧树脂中扩散的分子动力学模拟 [J]. 计算机与应用化学, 2014, 31: 697
|
16 |
Musto P, Mascia L, Ragosta G, et al. The transport of water in a tetrafunctional epoxy resin by near-infrared Fourier transform spectroscopy [J]. Polymer, 2000, 41: 565
|
17 |
Musto P, Ragosta G, Scarinzi G, et al. Probing the molecular interactions in the diffusion of water through epoxy and epoxy-bismaleimide networks [J]. J. Polym. Sci., 2002, 40B: 922
|
18 |
Cotugno S, Mensitieri G, Musto P, et al. Molecular interactions in and transport properties of densely cross-linked networks: A time-resolved FT-IR spectroscopy investigation of the epoxy/H2O system [J]. Macromolecules, 2005, 38: 801
|
19 |
Goudeau S, Charlot M, Vergelati C, et al. Atomistic simulation of the water influence on the local structure of polyamide 6,6 [J]. Macromolecules, 2004, 37: 8072
|
20 |
Lin Y C, Chen X. Investigation of moisture diffusion in epoxy system: Experiments and molecular dynamics simulations [J]. Chem. Phys. Lett., 2005, 412: 322
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|