Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 899-904    DOI: 10.11902/1005.4537.2020.161
Current Issue | Archive | Adv Search |
Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy
XU Guifang(), LI Yuan, LEI Yucheng, ZHU Qiang
School of Materials Science and Engineering, Jiangsu University,Zhenjiang 212013, China
Download:  HTML  PDF(6890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of high nitrogen austenitic stainless steel in liquid LBE saturated with oxygen at 400 ℃, by different relative flow velocity (0, 0.92, 1.27, 1.61 and 2.01 m/s) for 1000 h was studied by means of SEM with EDS and XRD. The results show that the relative flow velocity may affect the corrosion mechanism of the steel. For static samples, the initial formed oxide scale on the steel surface can effectively prevent further oxidation of high nitrogen steel; for dynamic samples, the initial oxide scale on the steel surface is destroyed, and the coexistence of oxidizing corrosion and dissolving corrosion may occur. When the relative flow velocity increases from 0 to 0.92 m/s, the damage of the initial oxide scale leads to diffusion oxidation of the steel beneath the scale, but the process is mainly oxidizing corrosion; when the relative flow rate increases from 0.92 to 2.01 m/s, alloying elements, which migrate outwards to the surface, will be removed in time at a higher relative flow velocity, thereby the proportion of dissolving corrosion increases, and the oxidizing corrosion decreases gradually. The oxidizing corrosion products composited of oxide particles with double-layered structure, the outer layer is porous Fe3O4, and the inner layer is (Fe,Cr)3O4.

Key words:  high nitrogen austenitic stainless steel      lead bismuth eutectic alloy (LBE)      relative flow velocity      element diffusion      oxidation corrosion     
Received:  10 September 2020     
ZTFLH:  TL341  
Fund: Industry Prospect and Common Key Technologies of Jiangsu Province(BE2017127)
Corresponding Authors:  XU Guifang     E-mail:  gfxu@ujs.edu.cn
About author:  XU Guifang, E-mail: gfxu@ujs.edu.cn

Cite this article: 

XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 899-904.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.161     OR     https://www.jcscp.org/EN/Y2021/V41/I6/899

Fig.1  Size of T-specimen
Fig.2  Corrosion test device
Fig.3  Velocity profile of LBE on the sample surface by FLUENT simulation
Fig.4  SEM images of surface under relative flow velocity of 0 m/s (a), 0.92 m/s (b), 1.27 m/s (c), 1.61 m/s (d), 2.01 m/s(e) after corrosion for 1000 h
Fig.5  Compound coverage rate of sample surface under different relative flow velocity
Fig.6  SEM image and EDS element analysis of corrosion surface of sample H1-4: (a) surface of H1-4, (b) point A in Fig.6a, (c) point B in Fig.6a
Fig.7  XRD patterns of corrosion surface under different relative flow velocity
Fig.8  SEM images (a, c, e, g, i) and EDS analysis (b, d, f, h, j, k, l) of corross-section at relative flow velocity of 0 m/s (a, b), 0.92 m/s (c, d), 1.27 m/s (e, f), 1.61 m/s (g, h), 2.01 m/s (i, j) and EDS analysis of point A (k), point B (l) in Fig.8(i)
1 Kurata Y, Futakawa M, Saito S. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations [J]. J. Nucl. Mater., 2008, 373: 164
2 Zhang J, Li N, Chen Y T, et al. Corrosion behaviors of US steels in flowing lead bismuth eutectic (LBE) [J]. J. Nucl. Mater., 2005, 336: 1
3 Wu Y C, Huang Q Y, Bai Q Y, et al. Preliminary experimental study on the corrosion of structural steels in liquid lead bismuth loop [J]. Chin. J. Nucl. Sci. Eng., 2010, 30: 238
吴宜灿, 黄群英, 柏云清等. 液态铅铋回路设计研制与材料腐蚀实验初步研究 [J]. 核科学与工程, 2010, 30: 238
4 Aiello A, Azzati M, Benamati G, et al. Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration [J]. J. Nucl. Mater., 2004, 335: 169
5 Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600℃ [J]. Corros. Sci., 2006, 48: 577
6 Yamaki E, Ginestar K, Martinelli L. Dissolution mechanism of 316L in lead-bismuth eutectic at 500 ℃ [J]. Corros. Sci., 2011, 53: 3075
7 Koury D, Johnson A L, Ho T, et al. Analysis of bi-layer oxide on austenitic stainless steel, 316L, exposed to lead-bismuth eutectic (LBE) by x-ray photoelectron spectroscopy (XPS) [J]. J. Nucl. Mater., 2013, 440: 28
8 Wang Z H, Chen H. Flowing liquid metal corrosion of structural steels in the Pb-Bi eutectic [J]. Adv. Mat. Res., 2012, 581: 1040
9 Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion [J]. J. Nucl. Mater., 2008, 373: 351
10 Shi F, Cui W F, Wang L J, et al. Advance in the research of high-nitrogen austenitic stainless steels [J]. Shanghai Met., 2006, 28(5): 45
石锋, 崔文芳, 王立军等. 高氮奥氏体不锈钢研究进展 [J]. 上海金属. 2006, 28(5): 45
11 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (part Ⅲ) [J]. Corros. Sci., 2008, 50: 2549
12 Chakraborty P, Singh V, Bysakh S, et al. Short-term corrosion behavior of indian RAFM steel in liquid Pb-Li: Corrosion mechanism and effect of alloying elements [J]. J. Nucl. Mater., 2019, 520: 208
13 Li M Y, Zhang Z Z, Chen L L, et al. Study on corrosion products of T91 and 316L steels in oxygen controlled LBE for 600 hrs [J]. Nucl. Sci. Eng., 2018, 38: 784
李明杨, 张志忠, 陈刘利等. T91和316L钢在氧控铅铋中600小时后腐蚀产物分析 [J]. 核科学与工程, 2018, 38: 784
14 Luo M, Lei Y C, Chen G, et al. Effect of flow rate on corrosion behavior of 316L stainless steel welding seam in liquid lead bismuth [J]. Trans. China Weld. Inst., 2019, 40(3): 65
罗梦, 雷玉成, 陈钢等. 相对流速对316L钢焊缝在液态铅铋合金中腐蚀行为的影响 [J]. 焊接学报, 2019, 40(3): 65
15 Xie B, Hu R, Weng K P. Study of surficial corrosion of 304L stainless steel in liquid LiPb alloy [J]. Sichuan. Chem. Ind., 2009, 12(1): 30
谢波, 胡睿, 翁葵平. 304L不锈钢在液态锂铅合金中的表面腐蚀研究 [J]. 四川化工, 2009, 12(1): 30
16 Kamachi M U, Baldev R. Translated by Li J, Huang Y H. High Nitrogen Steels and Stainless Steels-manufacturing, Properties and Applications [M]. Beijing: Chemical Industry Press, 2006: 110
卡曼奇·曼德里U, 贝德威R著, 李晶, 黄运华译. 高氮钢和不锈钢-生产、性能与应用 [M]. 北京: 化学工业出版社, 2006: 110
17 Tsisar V, Schroer C, Wedemeyer O, et al. Corrosion behaovior of austenitic 1.4970, 316L and 1.4571 in flowing LBE at 450 and 550 with 10-7mass% dissolved oxygen [J]. J. Nucl. Mater., 2014, 454: 332
18 Ju N, Lei Y C, Chen G, et al. Corrosion behavior of stainless steel 410 in flowing lead-bismuth eutectic alloy at 550 ℃ [J]. Mater. Rep., 2019, 33: 3489
鞠娜, 雷玉成, 陈钢等. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为 [J]. 材料导报, 2019, 33: 3489
19 Zhang Z M, Wang J Q. Effects of surface condition on corrosion and stress corrosion cracking of alloy 690TT [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 441
张志明, 王俭秋. 表面状态对690TT合金腐蚀及应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2011, 31: 441
[1] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
No Suggested Reading articles found!