Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 549-554    DOI: 10.11902/1005.4537.2020.143
Current Issue | Archive | Adv Search |
Hydrogen Absorption Behavior of Near α Ti70 Alloy
WANG Jia1, LIU Xiaoyong1(), GAO Lingqing1,2, ZHA Xiaoqin1,2, LUO Xianfu1, ZHANG Wenli1, ZHANG Hengkun1
1.Luoyang Ship Material Research Institute, Luoyang 471023, China
2.Henan Key Laboratory of Technology and Application of Structural Materials for Ships and Marine Equipments, Luoyang 471023, China
Download:  HTML  PDF(8423KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hydrogen absorption behavior of Ti70 alloy was studied by electrolytic hydrogen charging and then characterized via hydrogen analyzer and metallographic microscope. The relationship between the hydrogen content with the microstructure, diffusion direction and specific surface area of Ti70 alloy was examined. The results show that the increased continuity of β phase strongly facilitates the absorption capacity of Ti70 alloy, whereas, the β phase provides more tetrahedral interstitial sites, becoming the easier diffusion path for H. The distribution of H in the alloy is macroscopically non-uniform. The H content shows a sharp decreasing from the surface to the interior. The diffusion of H along the thickness direction is much more difficult than the rolling direction. This should be attributed to the blocking effects caused by the elongated α phase in the thickness direction and the more continuous β phase along the rolling direction. The H absorption capacity was found to increase with the specific surface area of the alloy sample, which further proved that the absorbed H is not sufficiently diffused in the alloy sample, as a result, the larger the surface area per unit volume, the higher the H absorption capacity.

Key words:  Ti70 alloy      microstructure      diffusion direction      specific surface area      hydrogen absorption capacity     
Received:  04 August 2020     
ZTFLH:  TG146  
Corresponding Authors:  LIU Xiaoyong     E-mail:  liuxiaoyong@alumni.sjtu.edu.cn
About author:  LIU Xiaoyong, E-mail: liuxiaoyong@alumni.sjtu.edu.cn

Cite this article: 

WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 549-554.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.143     OR     https://www.jcscp.org/EN/Y2021/V41/I4/549

Fig.1  Metallographic structures of Ti70 sample after heat treatment at different temperatures: (a, b) original plate, (c, d) kept at 800 ℃ for 20 min and air-cooled to room temperature, (e, f) kept at 900 ℃ for 20 min and air-cooled to room temperature, (g, h) kept at 1000 ℃ for 20 min and air-cooled to room temperature
Condition1#2#3#4#
Before charging12151943
After charging1902303201120
Table1  Hydrogen content of Ti70 samples in different tissues before and after hydrogen charging
Fig.2  Schematic diagram of hydrogen content changes at different sites: (a) continuous sampling from the surface to the core along the rolling derection, (b) take a hydrogen test sample for every 1 mm drop from the upper surface to the lower surface along the plate thickness direction
Direction12345678
L980553826251613---
S194241414141318242
Table 2  Hydrogen content of samples at different sites
Fig.3  Variation of hydrogen content with the specific surface areas
StructureD0 / cm2·s-1Q / kJ·mol-1D / cm2·s-1
α-Ti, hcp1.8×10-251.51.9×10-11
------2.6×10-10
6×10-264.73.2×10-12
β-Ti, bcc1.95×1027.63.0×10-8
1.58×1021.13.3×10-7
Table 3  Diffusion coefficient of hydrogen in titanium[13]
Fig.4  Distribution diagram of tetrahedral interstice in closed-packed hexagonal structure (a) and schematic diagram of the diffusion path of hydrogen atoms in a body centered cubicstructure (b)
Fig.5  Microstructure diagram of Ti70 alloy
1 Gilbert J L, Mali S A. Medical implant corrosion: Electrochemistry at metallic biomaterial surfaces [A]. Eliaz N. Degradation of Implant Materials [M]. New York: Springer, 2012: 1
2 Chattoraj I. Stress corrosion cracking (SCC) and hydrogen-assisted cracking in titanium alloys [A]. Stress Corrosion Cracking: Theory and Practice [M]. Cambridge: Woodhead Publishing, 2011: 381
3 Chang Y H, Breen A J, Tarzimoghadam Z, et al. Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale [J]. Acta Mater., 2018, 150: 273
4 Xu J J, Yan K, Zhu Z Q, et al. Research on hydrogen brittleness of T225NG Ti-alloy [J]. China Mech. Eng., 2005, 16: 1018
徐济进, 严铿, 朱正强等. T225NG钛合金氢脆行为的研究 [J]. 中国机械工程, 2005, 16: 1018
5 Qu G J, Yu D H, Miao Y. Application of titanium and its alloys and hydrogen embrittlement corrosion and protection of titanium [J]. Chlor-Alkali Ind., 1996, (4): 33
曲广杰, 于德海, 苗艳. 钛与其合金的应用及钛的氢脆腐蚀与防护 [J]. 氯碱工业, 1996, (4): 33
6 Wang Z C. Hydrogen behavior during welding of titanium and titanium and titanium alloys [J]. Rare Met. Mater. Eng., 1986, (5): 11
王者昌. 钛及钛合金焊接时氢的行为 [J]. 稀有金属材料与工程, 1986, (5): 11
7 Lenning G A, Craighead C M, Jaffee R I. Constitution and mechanical properties of titanium-hydrogen alloys [J]. JOM, 1954, 6: 367
8 Kessler H D, Sherman R G, Sullivan J F. Hydrogen affects critical properties in commercial titanium [J]. JOM, 1955, 7: 242
9 Liu S, Wang Y G, Sun S. Effect of microstructure on room-temperature hydrogen absorption behavior of Ti-6Al-4V alloy [J]. Rare Met.Mater. Eng., 2017, 46: 2240
刘松, 王寅岗, 孙胜. Ti-6Al-4V钛合金组织对其室温吸氢行为的影响 [J]. 稀有金属材料与工程, 2017, 46: 2240
10 Yan L, Ramamurthy S, Noël J J, et al. Hydrogen absorption into alpha titanium in acidic solutions [J]. Electrochim. Acta, 2006, 52: 1169
11 Tal-Gutelmacher E, Eliezer D. The hydrogen embrittlement of titanium-based alloys [J]. JOM, 2005, 57(9): 46
12 He L. Review of corrosion protection and bio-fouling prevention for titanium alloy pipes [J]. Dev. Appl. Mater., 2017, 32(3): 121
何磊. 钛合金海水管路腐蚀与污损防护研究进展 [J]. 材料开发与应用, 2017, 32(3): 121
13 Chu W Y, Qiao L J, Li J X, et al. Hydogen Embrittlement and Stress Corrosion: A Typical System [M]. Beijing: Science Press, 2013: 966
褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀: 典型体系 [M]. 北京: 科学出版社, 2013: 966
14 Tal-Gutelmacher E, Eliezer D. Hydrogen-assisted degradation of titanium based alloys [J]. Mater. Trans., 2004, 45: 1594
15 He X, Shen B L, Cao J L, et al. Effects of hydrogen on strength and plasticity of two types of new titanium alloys [J]. Rare Met. Mater. Eng., 2003, 32: 390
何晓, 沈保罗, 曹建玲等. 氢对两种新型钛合金强度和塑性的影响 [J]. 稀有金属材料与工程, 2003, 32: 390
16 Mishin Y, Herzig C. Diffusion in the Ti-Al system [J]. Acta Mater., 2000, 48: 589
17 Hood G M. Diffusion in α-Zr, HCP and open metals [J]. Defect Diffus. Forum, 1993, 95-98: 755
18 Mishin Y, Farkas D. Monte Carlo simulation of correlation effects in a random bcc alloy [J]. Philos. Mag., 1997, 75A: 201
[1] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[3] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[6] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[7] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[8] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[9] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[10] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[12] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[13] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[14] Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[15] Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
No Suggested Reading articles found!