|
|
Characterization of Seawater Corrosion Interface of Zinc Coated Steel Plate in Zhong-gang Harbor |
MA Shide1, LIU Xin2( ), WANG Zaidong3, REN Yadong2, TAI Yu3, HAN Wen3, DUAN Jizhou1 |
1.Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2.College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China 3.Qingdao Dongqi Machinery Equipment Co. Ltd. , Qingdao 266071, China |
|
|
Abstract Hot dip galvanized-, cold galvanized- and Zn-rich coating coated-plain carbon steels were exposure in the seawater of Zhong-gang harbor at Qingdao for five years. Then the long-term immersed steels were characterized by means of EDS, XRD and FT-IR, especially in terms of the interface of seawater/steel. It follows that for the steel plate with Zn-rich coating, cracks emerged at edges and conners, and occurrence of coating falling off on the surface could be observed, which indicates that the coating has generally failed; Meanwhile, both the cold-dip galvanized and hot-dip galvanized plates maintain good barrier performance, and the elemental X-ray mapping reveals that there exist Zn of homogeneous distribution on their corroded surface, to which the better protectiveness of the two Zn galvanizing coatings may be ascribed. Among others, the hot-dip galvanizing is the best in corrosion resistance. The results of characterization for fouling organism on the surface of steel plates show that there is no significant difference in the fouling process in the formation of micro biofilm or the large fouling biological community among the three materials. Comprehensive comparison of corrosion and fouling of steel plates show that the corrosion protectiveness of the three coatings may be ranked in the order as follows: hot dip galvanizing>cold galvanizing>zinc rich coating.
|
Received: 30 November 2020
|
|
Fund: National Natural Science Foundation of China(59471054) |
Corresponding Authors:
LIU Xin
E-mail: xliu_neu@126.com
|
About author: LIU Xin, E-mail: xliu_neu@126.com
|
1 |
Hayatdavoudi H, Rahsepar M. A mechanistic study of the enhanced cathodic protection performance of graphene-reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate [J]. J. Alloy. Compd., 2017, 727: 1148
|
2 |
Azar M M K, Gugtapeh H S, Rezaei M. Evaluation of corrosion protection performance of electroplated zinc and inc-graphene oxide nanocomposite coatings in air saturated 3.5%NaCl solution [J]. Colloids Surf., 2020, 601A: 125051
|
3 |
Li W J, Fan Z B, Li X G, et al. Improved anti-corrosion performance of epoxy zinc rich coating on rusted steel surface with aluminum triphosphate as rust converter [J]. Prog. Org. Coat., 2019, 135: 483
|
4 |
Cao X K, Huang F, Huang C, et al. Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection [J]. Corros. Sci., 2019, 159: 108120
|
5 |
Gu M L, Liu X, Zhang Z Y, et al. Characteristics and development status of hot-dip galvanizing and zinc alloy coating in continuous strips [J]. Mater. Prot., 2019, 52(9): 176
|
|
谷美玲, 刘昕, 张子月等. 连续板带热镀锌及锌合金镀层的特点与展望 [J]. 材料保护, 2019, 52(9): 176
|
6 |
Ma G, Yu Y S, Liu S L, et al. Research on effect of hot-dip galvanizing on fatigue properties of Q420 steel for transmission tower [J]. Hot Work. Technol., 2019, 48(4): 154
|
|
马光, 于艳爽, 刘胜林等. 热浸镀锌对输电铁塔用Q420钢疲劳性能影响的研究 [J]. 热加工工艺, 2019, 48(4): 154
|
7 |
Li X, Li H R, Li M X, et al. Effects of hot dip time on mechanical properties of pure zinc and RE-containing zinc alloy coatings [J]. Hot Work. Technol., 2020, 49(8): 115
|
|
李欣, 李慧荣, 李孟星等. 热浸时间对纯锌和含锌RE合金镀层力学性能的影响 [J]. 热加工工艺, 2020, 49(8): 115
|
8 |
Al-Sabagh A M, Abdou M I, Migahed M A, et al. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating [J]. Egypt. J. Pet., 2018, 17: 137
|
9 |
Ma S D, Xu L T, Liu H L, et al. Preliminary study on fouling organisms and their quantification in Qingdao harbor [J]. China Coat., 2019, 34(2): 60
|
|
马士德, 徐利婷, 刘会莲等. 青岛港湾污损生物及其量化初探 [J]. 中国涂料, 2019, 34(2): 60
|
10 |
Ma S D. Marine Biological Corrosion “the Frontier of Contemporary Marine Science” [M]. Beijing: Academy Press, 2000: 155
|
|
马士德. 海洋生物腐蚀“当代海洋科学学科前沿” [M]. 北京: 学苑出版社, 2000: 155
|
11 |
Ma S D, Zhang L L, Xiu P Y, et al. Preliminary study on community change of antifouling coatings/seawater interface in Qingdao harbor [J]. China Coat., 2019, 34(1): 52
|
|
马士德, 张林林, 修鹏远等. 青岛港湾防污涂料/海水界面细菌污损群落变化初探 [J]. 中国涂料, 2019, 34(1): 52
|
12 |
Ma S D, Sun H Y, Huang G Q, et al. Effect of marine fouling creatures on corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 177
|
|
马士德, 孙虎元, 黄桂桥等. 海洋污损生物对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2000, 20: 177
|
13 |
Dang H Y, Huang R F, Jiao N Z. Inspirations from the scientific discovery of the anammox bacteria: A classic example of how scientific principles can guide discovery and development [J]. Sci. China Earth Sci., 2016, 46: 1
|
|
党宏月, 黄榕芳, 焦念志. 厌氧铵氧化细菌的科学发现及启示—利用科学原理指引科学发现和推动科学发展的经典范例 [J]. 中国科学: 地球科学, 2016, 46: 1
|
14 |
Xiao X L, Zeng Q L, Zhang R, et al. Prochlorococcus viruses—from biodiversity to biogeochemical cycles [J]. Sci. China Earth Sci., 2018, 48: 1589
|
|
肖喜林, 曾庆璐, 张锐等. 原绿球藻病毒研究进展—从多样性到生物地球化学过程 [J]. 中国科学: 地球科学, 2018, 48: 1589
|
15 |
Jiao N Z, Sieracki M E, Zhang Y, et al. Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems [J]. Chin. Sci. Bull., 2003, 48: 530
|
|
焦念志, Sieracki M E, 张瑶等. 好氧不产氧光合异养细菌及其在海洋生态系统中的作用 [J]. 科学通报, 2003, 48: 530
|
16 |
Kolber Z S, Plumley F G, Lang A S, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean [J]. Science, 2001, 292: 2492
|
17 |
Ma S D, Yao Z L, Liao Y F, et al. Antifouling properties and corrosion resistances of three kinds of zinc coating in the Sea [J]. J. Guangxi Acad. Sci., 2016, 32(3): 185
|
|
马士德, 姚振玲, 廖阳飞等. 三种锌防腐层的海水腐蚀与防污性能初探 [J]. 广西科学院学报, 2016, 32(3): 185
|
18 |
Wuchter C, Schouten S, Boschker H T S, et al. Bicarbonate uptake by marine Crenarchaeota [J]. FEMS Microbiol. Lett., 2003, 219: 203
|
19 |
Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota [J]. PLoS Biol., 2006, 4: e95
|
20 |
Teng S, Gao Y, Cao F L, et al. Zinc-reduced graphene oxide for enhanced corrosion protection of zinc-rich epoxy coatings [J]. Prog. Org. Coat., 2018, 123: 185
|
21 |
Wu R J, Li R X, Zhu M Y, et al. Multivariate analysis with primer on marine phytoplankton community structure in mesocosm system [J]. Oceanol. Limnol. Sin., 2006, 37: 316
|
|
吴荣军, 李瑞香, 朱明远等. 应用PRIMER软件进行浮游植物群落结构的多元统计分析 [J]. 海洋与湖沼, 2006, 37: 316
|
22 |
Ma S D, Wang Z D, Liu H L, et al. A research on biofouling of cold galvanizing coatings [J]. China Coat., 2017, 32(9): 32
|
|
马士德, 王在东, 刘会莲等. 冷镀锌涂料的生物污损研究 [J]. 中国涂料, 2017, 32(9): 32
|
23 |
Huang Z G, Cai R X. Marine Fouling Organisms and Prevention [M]. Beijing: Ocean Press, 1984: 3
|
|
黄宗国, 蔡如星. 海洋污损生物及其防除 [M]. 北京: 海洋出版社, 1984: 3
|
24 |
Liu M L, Yan T. A review of marine fouling communities in the South China Sea [J]. Mar. Sci. Bull., 2006, 25(1): 84
|
|
刘勐伶, 严涛. 南海污损生物生态研究进展 [J]. 海洋通报, 2006, 25(1): 84
|
25 |
Ma S D, Xie X B, Huang X M, et al. The effect of barnacle adhesion on metal corrosion in seawater [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 74
|
|
马士德, 谢肖勃, 黄修明等. 藤壶附着对海水中金属腐蚀的影响 [J]. 中国腐蚀与防护学报, 1995, 15: 74
|
26 |
Ma S D, Zhang L L, Duan J Z, et al. A preliminary study on bacterial community of micro-biofilm in Qingdao Zhonggang [J]. J. Guangxi Acad. Sci., 2019, 35(2): 155
|
|
马士德, 张林林, 段继周等. 青岛中港微型生物膜中污损细菌群落初探 [J]. 广西科学院学报, 2019, 35(2): 155
|
27 |
State Bureau of Technical Supervision. . The specification for oceanographic survey-marine biological survey [S]. Beijing: China Standard Press, 1992
|
|
(国家技术监督局, GB/T12763.6-1991. 海洋调查规范, 海洋生物调查 [S]. 北京: 中国标准出版社出版, 1992
|
28 |
Bomberger H B, Cambourelis P J, Hutchinson G E. Corrosion properties of titanium in marine environments [J]. J. Electrochem. Soc., 1954, 101: 442
|
29 |
Wu S R, Duan J Z, Du M, et al. Corrosion of carbon steel influenced by SRB and IRB anaerobic biofilm [J]. Dev. Appl. Mater., 2008, 23(3): 53
|
|
武素茹, 段继周, 杜敏等. 硫酸盐还原细菌和铁还原细菌混合生物膜对碳钢腐蚀的影响 [J]. 材料开发与应用, 2008, 23(3): 53
|
30 |
Wei X. Discussion on the influence of marine biofouling of jacket platform security [J]. Total Corros. Control, 2015, 29(2): 55
|
|
魏羲. 浅谈海洋生物污损对导管架平台安全的影响 [J]. 全面腐蚀控制, 2015, 29(2): 55
|
31 |
Ma S D. Preliminary study on the relationship between marine micro organisms and metal corrosion [A]. Academic report on corrosion and protection in 1979 [C]. Beijing, 1982: 76
|
|
马士德. 海洋微型生物与金属腐蚀关系的初步探讨 [A]. 1979年腐蚀与防护学术报告会议论文集 [C]. 北京, 1982: 76
|
32 |
Ma S D, Wang Z D, Liu H L, et al. Study on biofouling of hot-dip galvanizing materials [J]. J. Guangxi Academy Sci., 2018, 34(4):251
|
|
马士德, 王在东, 刘会莲等. 热浸锌材料的生物污损研究 [J]. 广西科学院学报, 2018, 34(4): 251
|
33 |
Sun H Y, Ma S D, Hou B R, et al. Mathematical simulation action of corrosion depth data of carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 183
|
|
孙虎元, 马士德, 侯保荣等. 海洋环境下碳钢腐蚀规律的数学模拟 [J]. 中国腐蚀与防护学报, 2000, 20: 183
|
34 |
Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
|
|
王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|