|
|
Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy |
YUE Liangliang, MA Baoji( ) |
Shaanxi Province Special Processing Key Laboratory, School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an 710021, China |
|
|
Abstract The article aims to develop a new processing technique to efficiently improve the corrosion resistance of Mg-alloy, thus ultrasonic surface rolling process (USRP) was applied to modify the corrosion resistance of extruded AZ31B Mg-alloy. The grain size and surface morphology as well as the corrosion behavior of AZ31B Mg-alloy before and after ultrasonic surface rolling were comparatively examined by means of metallomicroscope and scanning electron microscopy, white light interferometer and electrochemical impedance spectroscopy. The results implied that USRP has significant influence on the grain size and surface morphology, in turn it has important influence on the corrosion behavior of AZ31B alloy. Compared with the bare alloy, the corrosion product film on USRPed alloy was much uniform and dense, while after removal of the corrosion products, small and dense corrosion pits could be seen on the Mg-alloy surface. The passivation film resistance (Rf=9020 Ω) of the treated alloy was much larger than that (Rf=14.8 Ω) of the bare alloy in the early stage of immersion. The impedance characteristic caused by the diffusion process appeared on the impedance spectrum of the bare alloy in the middle of immersion. At this time, the film resistance Rf=22.9 Ω, which is much smaller than the film resistance Rf=19800 Ω of the USRPed alloy. In the late stage of immersion, the passivation film resistance was Rf=31400 Ω for the USRPed alloy, while Rf=14400 Ω for the bare Mg-alloy. It follows that the ultrasonic surface rolling process could reduce the surface roughness, and refine the grains of Mg-alloy, thus increase the uniformity and compactness of passivation film on Mg-alloy, namely retard the electrochemical reaction process on the alloy surface, therewith reduce the occurrence of local pitting, then reduce the corrosion rate of Mg-alloy.
|
Received: 09 November 2019
|
|
Fund: Shaanxi Provincial Key Research and Development Program Funding Project(2018GY-120);Shaanxi Provincial Key Laboratory of Special Processing Open Fund Project(2017SXTZKFJG02);Research Project of Key Laboratory of Shaanxi Provincial Department of Education(17JS056) |
Corresponding Authors:
MA Baoji
E-mail: mabaoji@xatu.edu.com
|
[1] |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
|
[2] |
Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater. Sci. Eng., 2016, C68: 948
|
[3] |
Lhotka C, Szekeres T, Steffan I, et al. Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements [J]. J. Orthop. Res., 2003, 21: 189
doi: 10.1016/S0736-0266(02)00152-3
pmid: 12568948
|
[4] |
Walker J, Shadanbaz S, Woodfield T B F, et al. Magnesium biomaterials for orthopedic application: A review from a biological perspective [J]. J. Biomed. Mater. Res., 2014, 102B: 1316
|
[5] |
Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27: 1728
doi: 10.1016/j.biomaterials.2005.10.003
|
[6] |
Zeng R C, Cui L Y, Ke W. Medical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2008, 54: 1215
|
|
(曾荣昌, 崔蓝月, 柯伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215)
doi: 10.11900/0412.1961.2018.00032
|
[7] |
Han L Y, Li X, Bai J, et al. Effects of flow velocity and different corrosion media on the in vitro bio-corrosion behaviors of AZ31 magnesium alloy [J]. Mater. Chem. Phys., 2018, 217: 300
doi: 10.1016/j.matchemphys.2018.06.047
|
[8] |
Yuan G Y, Niu J L. Research progress of biodegradable magnesium alloys for orthopedic applications [J]. Acta Metall. Sin., 2017, 53: 1168
doi: 10.11900/0412.1961.2017.00247
|
|
(袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展 [J]. 金属学报, 2017, 53(10): 1168)
doi: 10.11900/0412.1961.2017.00247
|
[9] |
Sunil B R, Kumar T S S, Chakkingal U, et al. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing [J]. Mater. Sci. Eng., 2016, C59: 356
|
[10] |
Guo C G, Xu Y M, Wang L Q, et al. Effect of laser surface strengthening on corrosion behavior of magnesium alloy in simulated body fluid [J]. Surf. Technol., 2017, 46(8): 188
|
|
(郭长刚, 许益蒙, 王凌倩等. 激光表面强化对镁合金在模拟体液中腐蚀行为的影响 [J]. 表面技术, 2017, 46(8): 188)
|
[11] |
Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Ann., 2008, 57: 716
doi: 10.1016/j.cirp.2008.09.005
|
[12] |
Ben Hamu G, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloy. Compd., 2009, 468: 222
|
[13] |
Denkena B, Lucas A. Biocompatible magnesium alloys as absorbable implant materials-adjusted surface and subsurface properties by machining processes [J]. CIRP Ann., 2007, 56: 113
|
[14] |
Salahshoor M, Li C, Liu Z Y, et al. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing [J]. J. Mech. Behav. Biomed. Mater., 2017, 78: 246
pmid: 29179040
|
[15] |
Liu M E, Sheng G M, Yin L J. Effects of high energy shot peening for magnesium alloy AZ31 on the corrosion properties and microhardness [J]. J. Funct. Mater., 2012, 43: 2702
|
|
(刘蒙恩, 盛光敏, 尹丽晶. 高能喷丸对AZ31镁合金耐腐蚀性及硬度的影响 [J]. 功能材料, 2012, 43: 2702)
|
[16] |
Schulze V, Bleicher F, Groche P, et al. Surface modification by machine hammer peening and burnishing [J]. CIRP Ann., 2016, 65: 809
|
[17] |
Zhang Y J. Research on surface strengthening and fatigue failure mechanism of magnesium alloy with gradient nanostructure [D]. Changchun: Jilin University, 2018
|
|
(张艳君. 梯度纳米化镁合金表面强化机制及疲劳失效机理研究 [D]. 长春: 吉林大学, 2018)
|
[18] |
Bai Y H, Chai M L, Yang X J, et al. Study on feasibility of improving fatigue properties of 30CrNiMo8 steel by ultrasonic rolling process [J]. Manuf. Technol. Mach. Tool, 2019, (10): 88
|
|
(白音胡, 柴铭丽, 杨学军等. 超声滚压处理提高30CrNiMo8钢疲劳性能可行性的研究 [J]. 制造技术与机床, 2019, (10): 88)
|
[19] |
Bo W, Zhang L J, Zhang J X, et al. An investigation of ultrasonic nanocrystal surface modification machining process by numerical simulation [J]. Adv. Eng. Software, 2015, 83: 59
|
[20] |
Teimouri R, Amini S, Bami A B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6 [J]. Measurement, 2018, 116: 129
|
[21] |
Wang T. Research on improvement of 40cr steel properties by ultrasonic surface rolling processing [D]. Tianjin: Tianjin University, 2009
|
|
(王婷. 超声表面滚压加工改善40Cr钢综合性能研究 [D]. 天津: 天津大学, 2009)
|
[22] |
Ye X L, Zhu Y L, Zhang D H. Effects of ultrasonic deep rolling on fatigue performance of pre-corroded 7A52 aluminum alloy [J]. Adv. Mater. Res., 2011, 189-193: 897
|
[23] |
Wang B Y, Yin Y, Gao Z W, et al. Influence of the ultrasonic surface rolling process on stress corrosion cracking susceptibility of high strength pipeline steel in neutral pH environment [J]. RSC Adv., 2017, 7: 36876
|
[24] |
Zhang S B, Xiang S, Cheng T, et al. Influence of surface nanocrystallization of 20CrMnTi on behavior of localized corrosion by ultrasonic surface rolling processing [J]. Surf. Technol., 2019, 48(8): 136
|
|
(张胜博, 向嵩, 成桃等. 超声滚压20CrMnTi纳米化表面对局部腐蚀萌生行为的影响 [J]. 表面技术, 2019, 48(8): 136)
|
[25] |
Qi Y H, Fu S C, Gao H, et al. Corrosion behavior and tensile properties of AZ31 magnesium alloy sheet in PBS simulated body fluid [J]. Mech. Eng. Mater., 2014, 38(10): 16
|
|
(祁玉红, 付巳超, 高红等. AZ31镁合金板在PBS模拟体液中的腐蚀行为和拉伸性能 [J]. 机械工程材料, 2014, 38(10): 16)
|
[26] |
Zhang Y J, Yan C W, Wang F H, et al. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution [J]. Corros. Sci., 2005, 47: 2816
|
[27] |
Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2004
|
|
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2004)
|
[28] |
Li Y, Zhang T, Wang F H. Effect of microcrystallization on corrosion resistance of AZ91D alloy [J]. Electrochim. Acta, 2006, 51: 2845
|
[29] |
Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution [D]. Qingdao: University of Chinese Academy of Sciences (Institute of OceanologyChinese Academy of Sciences), 2017
|
|
(李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2017)
|
[30] |
Alvarez-Lopez M, Pereda M D, Del Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J]. Acta Biomater., 2010, 6: 1763
pmid: 19446048
|
[31] |
Takakuwa O, Soyama H. Effect of residual stress on the corrosion behavior of austenitic stainless steel [J]. Adv. Chem. Eng. Sci., 2015, 5: 62
doi: 10.4236/aces.2015.51007
|
[32] |
Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x
pmid: 29967353
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|