Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 230-236    DOI: 10.11902/1005.4537.2019.056
Current Issue | Archive | Adv Search |
Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment
JIA Qiaoyan1, WANG Bei1, WANG Yun1, ZHANG Lei1(), WANG Qing2, YAO Haiyuan2, LI Qingping2, LU Minxu1
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 China National Offshore Oil Corporation Research Institute, Beijing 100028, China
Download:  HTML  PDF(4796KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment was studied by means of weight loss method, polarization curve, electrochemical impedance spectroscopy and other electrochemical analysis techniques, as well as corrosion morphology observation and corrosion products analysis. The results revealed that the X65 steel had little corrosion in the oil phase, local corrosion occurred at the interface region between oil and water, severe corrosion occurred in the aqueous region, where the oil-water stratified medium was under stationary state with CO2 partial pressure of 0.9 MPa at 60 ℃. The addition of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt, which is water soluble rust inhibitor, could reduced the corrosion rate of X65 steel under this condition, while the addition of the decyl mercaptan, which is oil soluble rust inhibitor, could aggravated the local corrosion of X65 steel at the oil-water interface, whilst, groove corrosion was observed at the oil-water interface.

Key words:  oil-water interface      electrochemical method      CO2 corrosion      corrosion inhibitor     
Received:  10 May 2019     
ZTFLH:  TG172.9  
Fund: National Science and Technology Major Project(2016ZX05028-004)
Corresponding Authors:  ZHANG Lei     E-mail:  zhanglei@ustb.edu.cn

Cite this article: 

JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 230-236.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.056     OR     https://www.jcscp.org/EN/Y2020/V40/I3/230

Fig.1  Structural of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt (a) and decyl mercaptan (b)
Fig.2  Corrosion rates of X65 steel in different corrosive medium
Fig.3  Macroscopic corrosion morphologies of X65 steel in different medium after immersion for 3 d: (a) water, before pickling; (b) water, after pickling; (c) water+ oil, before pickling; (d) water+oil, after pickling; (e) water+oil+100 mg/L 10SH, before pickling; (f) water+oil+100 mg/L 10SH, after pickling
Fig.4  Enlarged morphologies of corrosion groove of X65 steel in oil-water interface region with 100 mg/L decyl mercaptan: (a) macro corrosion morphology, (b) micro corrosion morphologies 3D profile, (c) depth curve of guttering corrosion
Fig.5  Micro morphologies of different areas of X65 steel: (a) 0 mg/L, in oil region; (b) 0 mg/L, at the oil-water interface; (c) 0 mg/L, in water region; (d) 100 mg/L, in oil region; (e) 100 mg/L, at the oil-water interface; (f) 100 mg/L, in water region
Fig.6  XRD spectra of corrosion product film of carbon steel in aqueous phase: (a) in oil-water stratified medium, (b) in the oil-water stratified medium with 100 mg/L decyl mercaptan
Fig.7  Electrochemical test results of X65 steel in oil-water stratified medium with different corrosion inhibitors: (a) potentiodynamic polarization curve, (b) corrosion inhibition efficiency
Fig.8  EIS results of X65 steel in oil-water stratified medium with different corrosion inhibitors: (a) oil-water stratified medium, (b) oil-water stratified medium with 300 mg/L decyl mercaptan, (c) oil-water stratified medium with 300 mg/L seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt
Fig.9  Equivalent circuit used for fitting the EIS results: (a) single capacitive reactance, (b) double capacitive reactance, (c) capacitive reactance+inductive reactance+capacitive reactance
ConditionRs / Ω·cm2CPEfilmRf / Ω·cm2CPEdlRct / Ω·cm2RL / Ω·cm2L / H
Varietyt / hY1 / S·sn1·cm-2n1Y2 / S·sn2·cm-2n2
Blank14.005767.10.77828.3046401.00019.0958.367.363
34.57519010.86117.25117101.0007.53452.775.754
54.54727230.86813.99136101.0006.88444.385.451
74.61948170.85911.47166101.0006.95836.315.549
94.92150610.9628.265342401.0004.150------
114.80859080.9827.948449201.0004.112------
10SH14.93411300.62737.99643601.0005.76476.5970.98
34.972103300.65921.53540201.0006.4562.2341.10
54.96496940.70618.70645101.0006.88444.385.451
74.97892760.76615.42627701.0006.49761.3534.68
95.03996630.78214.34737200.96311.0861.4935.19
114.96690950.82513.73594501.0007.24463.4241.26
OAI1571.7---------1.560.593947.8------
3398.6---------1.500.592864------
514.81---------2.680.8779.7246735.7
713.58---------4.440.8529.71128328.6
95.423127.10.52018.813.490.596686.41278426.8
115.51118.80.52319.013.340.606680.71238519.2
Table 1  Parameter values of the equivalent circuit
Fig.10  Rp values of EIS fitting result
[1] Wang H W, Hong T, Cai J Y, et al. Enhanced mass transfer and wall shear stress in multiphase slug flow [A]. Corrosion 2002 [C]. Houston, TX, 2002
[2] Lu M X, Bai Z Q, Zhao X W, et al. Actuality and typical cases for corrosion in the process of extraction, gathering, storgage and transmission for oil and gas [J]. Corros. Prot., 2002, 23: 105
(路民旭, 白真权, 赵新伟等. 油气采集储运中的腐蚀现状及典型案例 [J]. 腐蚀与防护, 2002, 23: 105)
[3] Palacios C A, Shadley J R. CO2 corrosion of N-80 steel at 71 ℃ in a two-phase flow system [J]. Corrosion, 1993, 49: 686
doi: 10.5006/1.3316101
[4] Kang C, Gopal M, Jepson W P. Localized corrosion in multiphase pipelines [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
[5] Li Z L, Cheng Y P, Bi H S, et al. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields [J]. CIESC J., 2014, 65: 406
(李自力, 程远鹏, 毕海胜等. 油气田CO2/H2S共存腐蚀与缓蚀技术研究进展 [J]. 化工学报, 2014, 65: 406)
doi: 10.3969/j.issn.0438-1157.2014.02.006
[6] Nesic S, Cai J Y, Wang S H, et al. Integrated CO2 corrosion-multiphase flow model [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
[7] Zhang J X, Kang J, Fan J C, et al. Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry [J]. J. Nat. Gas Sci. Eng., 2016, 32: 334
doi: 10.1016/j.jngse.2016.04.056
[8] Nešić S, Lee K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model [J]. Corrosion, 2003, 59: 616
doi: 10.5006/1.3277592
[9] Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline [J]. Chin. J. Eng., 2018, 40: 594
(程远鹏, 白羽, 李自力等. 集输管道CO2/油/水环境中X65钢的腐蚀特征 [J]. 工程科学学报, 2018, 40: 594)
[10] Goyal M, Kumar S, Bahadur I, et al. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review [J]. J. Mol. Liq., 2018, 256: 565
doi: 10.1016/j.molliq.2018.02.045
[11] Choi H, Tonsuwannarat T. Unique roles of hydrocarbons in flow-Induced sweet Corrosion of X-52 carbon steel in wet gas condensate producing wells [A]. Corrosion 2002 [C]. Denver, Colorado, 2002
[12] Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
[13] Liu X W, Zheng J S. Effects of a small amount of diesel fuel oil on corrosion of carbon steel in brine medium [J]. Mater. Prot., 1999, 32(1): 1
(刘小武, 郑家燊. 少量柴油对盐水介质中碳钢腐蚀的影响 [J]. 材料保护, 1999, 32(1): 1)
[14] Liu X W, Peng F M, Yu D Y, et al. Corrosion inhibitor for oil pipeline [J]. Mater. Prot., 2000, 33(8): 3
(刘小武, 彭芳明, 俞敦义等. 输油管线缓蚀剂的研究 [J]. 材料保护, 2000, 33(8): 3)
[15] Zhao J M, Li Y L, Gu F, et al. Influence of crude oil on inhibition performance of corrosion inhibitors in H2S/CO2 containing brines [J]. Corros. Sci. Prot. Technol., 2016, 28: 423
(赵景茂, 李玉龙, 谷丰等. H2S/CO2腐蚀环境中原油对缓蚀剂缓蚀性能的影响 [J]. 腐蚀科学与防护技术, 2016, 28: 423)
doi: 10.11903/1002.6495.2015.402
[16] Liu L W, Zhao X R, Hu Q. Study on corrosion inhibiting efficiency of imidazoline corrosion inhibitor in oil-water coexistence condition [J]. Oil-Gasfield Surf. Eng., 2001, 20(1): 25
(刘烈炜, 赵小蓉, 胡倩. 油水两相共存下咪唑啉缓蚀剂的缓蚀效率 [J]. 油气田地面工程, 2001, 20(1): 25)
[17] Li C, Richter S, Nešić S. Effect of corrosion inhibitor on water wetting & CO2 corrosion in an oil-water two phase system [Z]. Athens: Ohio University, 2009
[18] Seal S, Jepson W P, Gopal M, et al. Surface chemical and morphological changes in corrosion product layers and inhibitors in CO2 corrosion in multiphase flowlines [A]. Corrosion 2000 [C]. Orlando, Florida, 2000
[19] Heuer J K, Stubbins J F. Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow [J]. Corrosion, 1998, 54: 566
doi: 10.5006/1.3284885
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[7] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[13] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[14] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[15] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
No Suggested Reading articles found!