Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 159-166    DOI: 10.11902/1005.4537.2019.012
Current Issue | Archive | Adv Search |
Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens
BAI Miaomiao1,2, BAI Ziheng1,2, JIANG Li1,2, ZHANG Dongjiu3, YAO Qiong3, WEI Dan4, DONG Chaofang1,2, XIAO Kui1,2()
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
3 China Xichang Satellite Launch Center Key Laboratory of Reliability Technology for Space Launch Site, Haikou 571000, China
4 Service Center for China Science and Technology Association, Beijing 100081, China
Download:  HTML  PDF(5571KB) 
Export:  BibTeX | EndNote (RIS)      

The corrosion behavior of vacuum diffusion welded component of H62 brass and TC4 Ti-alloy in 3.5% (mass fraction) NaCl solution for up to 24 h was investigated by means of immersion test, scanning Kelvin probe test, scanning electron microscopy attached with EDS and X-ray photoelectron spectroscopy. The results demonstrate that the weld seam width of the jointed H62 brass and TC4 Ti-alloy is about 25~30 μm, and the free corrosion potential of H62 brass is slightly higher than that of TC4 Ti-alloy at the initial stage of immersion test. However, with the prolongation of immersion time, the free corrosion potential of TC4 Ti-alloy turns to be higher than that of H62 brass, and the corrosion of the area of H62 brass, where closed to TC4 Ti-alloy is much more severe than that, where far away from the weld seam. The corrosion products of H62 brass after immersion test composed mainly of CuO, Cu2O, CuCl, CuCl2 and Cu(OH)2, while the scale on TC4 Ti-alloy composed mainly of Ti-oxides TiO2 and Ti2O3. The welded couple of H62 brass/TC4 Ti-alloy exhibits galvanic corrosion tendency in 3.5%NaCl solution, and the H62 brass acts as anode in the galvanic couple, which correspondingly underwent accelerated corrosion process.

Key words:  vacuum diffusion welding      galvanic corrosion      scanning Kelvin probe      immersion test      brass      Ti     
Received:  14 January 2019     
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51671027);National Key R&D Program of China(2017YFB0304602);National Materials Environmental Corrosion Platform (NECP)
Corresponding Authors:  XIAO Kui     E-mail:

Cite this article: 

BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 159-166.

URL:     OR

Fig.1  Diagram of SKP line scanning zone of test sample
Fig.2  SEM image of diffusion welding zone (a) and elem-ent distributions along the line acrossing the welding zone in Fig.2a (b)
Fig.3  Metallurgical structure of diffusion welding zone
Fig.4  Variations of SKP potentials of H62 brass alloy and TC4 titanium alloy in the welding zone of diffusion welding specimen after immersion in 3.5%NaCl solution for different time
Fig.5  Corrosion morphologies of H62 brass alloy and TC4 titanium alloy in the welding zone of diffusion welding specimen after immersion in 3.5%NaCl solution for 2 h (a), 4 h (b), 8 h (c), 12 h (d) and 24 h (e)
Fig.6  SEM images of different zones of the diffusion welding specimen after corrosion for 24 h, (a) H62 brass alloy near the welding zone, (b) H62 brass alloy far away from the welding zone, (c) TC4 titanium alloy
Fig.7  XPS survey spectrum of the surface of H62 brass alloy after immersion in 3.5%NaCl solution for 24 h
Fig.8  XPS high-resolution spectra of the surface of H62 brass alloy after immersion in 3.5%NaCl solution for 24 h: (a) Cu 2p, (b) Zn 2p, (c) O 1s, (d) Cl 2p
Fig.9  XPS survey spectrum of the surface of TC4 titanium alloy after immersion in 3.5%NaCl solution for 24 h
Fig.10  XPS high-resolution spectra of the surface of TC4 titanium alloy after immersion in 3.5%NaCl solution for 24 h, (a) Ti 2p, (b) O 1s
[1] Chen C, Wu J J, Zhang D. Effects of sulfate-reducing bacteria on marine corrosion of weld joints of EH40 [J]. Equip. Environ. Eng., 2018, 15(10): 51
(陈超, 吴佳佳, 张盾. 硫酸盐还原菌对EH40焊接钢海水腐蚀的影响 [J]. 装备环境工程, 2018, 15(10): 51)
[2] Zhang X D, Hu Y L, Bu S C, et al. Research progress in seawater corrosion of hull structural steel [J]. Equip. Environ. Eng., 2018, 15(6): 33
(张晓东, 胡裕龙, 卜世超等. 船体钢海水腐蚀研究进展 [J]. 装备环境工程, 2018, 15(6): 33)
[3] Chen P S, Xu Z J. Vacuum diffusion welding [J]. Tube Technol., 1979, 3(8): 33
(陈沛生, 徐志坚. 真空扩散焊 [J]. 电子管技术, 1979, 3(8): 33)
[4] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium alloy [M]. Beijing: Chemical Industry Press, 2005
(Leyens C, Peters M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005)
[5] Li X G. Introduction to Corrosion and Protection of Materials [M]. Beijing: China Machine Press, 2017
(李晓刚. 材料腐蚀与防护概论 [M]. 北京: 机械工业出版社, 2017)
[6] Ji J, Ma X Z. Welding of copper and copper alloy [J]. J. Weld. Technol., 1999, 4(2): 13
(季杰, 马学智. 铜及铜合金的焊接 [J]. 焊接技术, 1999, 4(2): 13)
[7] Sun F L, Li X G, Lu L, et al. Corrosion behavior of copper alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1211
(孙飞龙, 李晓刚, 卢琳等. 铜合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1211)
[8] Wang H J, Wang J, Peng X, et al. Corrosion behavior of three titanium alloys in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 75
(王海杰, 王佳, 彭欣等. 钛合金在3.5%NaCl溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 75)
[9] (Petzow G, translated by Li X X. Metallographisches Atzen [M]. Beijing: Popular Science Press, 1982
Petzow G著, 李新立译. 金相浸蚀手册 [M]. 北京: 科学普及出版社, 1982)
[10] Xiao K, Dong C F, Li X G, et al. Galvanic corrosion evaluation of magnesium alloys coupled with brass alloys studied by scanning Kelvin probe technology [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1023
(肖葵, 董超芳, 李晓刚等. 采用开尔文扫描探针技术研究镁合金偶接铜合金的电偶腐蚀规律 [J]. 北京科技大学学报, 2010, 32: 1023)
[11] An Y H, Dong C F, Xiao K, et al. Progress of application of Kelvin probe technique in studies on electrochemistry [J]. J. Corros. Sci. Prot. Technol., 2008, 20: 440
(安英辉, 董超芳, 肖葵等. Kelvin探针测量技术在电化学研究中的应用进展 [J]. 腐蚀科学与防护技术, 2008, 20: 440)
[12] Wu Z L, Liu J. Progress of new techniques in modern X-ray photoelectron spectroscopy (XPS) [J]. J. Mod. Instrum., 2006, 12: 50
(吴正龙, 刘洁. 现代X光电子能谱 (XPS) 分析技术 [J]. 现代仪器, 2006, 12: 50)
[13] Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potential of metals in natural river water [J]. Equip. Environ. Eng., 2017, 14(2): 31
(丁国清, 杨朝晖, 黄桂桥等. 金属材料在天然河水中的腐蚀电位研究 [J]. 装备环境工程, 2017, 14(2): 31)
[14] Akid R, Mills D J. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion [J]. Corros. Sci., 2001, 43: 1203
[15] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[16] Xu W. Application of titanium and titanium alloys in the chlor-alkali industry [J]. Chlor-Alkali Ind., 1988, (6): 39
(徐伟. 钛及钛合金在氯碱工业中的应用 [J]. 氯碱工业, 1988, (6): 39)
[17] Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
(黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报,2001, 21: 46)
[18] Wu C S, Zhang Z, Cao F H, et al. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions [J]. Appl. Surf. Sci., 2007, 253: 3893
[19] Wang Z H, Bai Y, Ma X, et al. Numerical simulation of galvanic corrosion for couple of Ti-alloy with Cu-alloy in seawaters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 403
(王振华, 白杨, 马晓等. 钛合金和铜合金管路电偶腐蚀数值仿真 [J]. 中国腐蚀与防护学报, 2018, 38: 403)
[20] Arya C, Vassie P R W. Influence of cathode-to-anode area ratio and separation distance on Galvanic corrosion currents of steel in concrete containing chlorides [J]. Cem. Concr. Res., 1995, 25: 989
[21] Cano E, Torres C L, Bastidas J M. An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity [J]. Mater. Corros., 2001, 52(9): 667
[22] Haupt S, Calinski C, Collisi U, et al. XPS and ISS examinations of electrode surfaces and passive layers with a specimen transfer in a closed system [J]. Surf. Interface Anal., 1986, 9: 357
[23] Watanabe M, Tomita M, Ichino T. Characterization of corrosion products formed on copper in urban, rural/coastal, and hot spring areas [J]. J. Electrochem. Soc., 2001, 148(12): B522
[24] Mezzi A, Angelini E, De Caro T, et al. Investigation of the benzotriazole inhibition mechanism of bronze disease [J]. Surf. Interface Anal., 2012, 44: 968
[25] Kong D C, Dong C F, Fang Y H, et al. Copper corrosion in hot and dry atmosphere environment in Turpan, China [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1721
[26] Langenegger E E, Robinson F P A. The role of arsenic in preventing the dezincification of a-brass [J]. Corrosion, 1969, 25: 137
[27] Namboodhiri T K G, Chaudhary R S, Prakash B, et al. The dezincification of brasses in concentrated ammonia [J]. Corros. Sci., 1982, 22: 1037
[28] Wang R Y. The Corrosion and Its Controlits Control of Seawater Cooling System [M]. Beijing: Chemical Industry Press, 2006
(王日义. 海水冷却系统的腐蚀及其控制 [M]. 北京: 化工工业出版社, 2006)
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[3] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[5] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[9] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[10] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[11] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[12] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[13] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[14] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[15] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
No Suggested Reading articles found!