Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 555-559    DOI: 10.11902/1005.4537.2020.109
Current Issue | Archive | Adv Search |
Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration
LV Xianghong1, MA Xiaofeng1(), HU Zhaowei2, LI Yuanyuan2, WANG Chen1
1.School of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2.Oil-Gas Storage and Transportation Company, PetroChina Xinjiang Oilfield, Karamay 831100, China
Download:  HTML  PDF(7455KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of T/S-52K pipeline steel in solutions of different NaCl concentration was studied by means of EDS, SEM, EIS and other analysis methods. The results showed that with the increase of Cl- concentration, the anodic dissolution of the activated regions was accelerated, which promoted the local corrosion of the sample surface, resulting in serious local corrosion. However, with the increasing coverage of the corrosion products scale, the effective reaction area decreased, so the uniform corrosion rate of the sample changed little. When NaCl concentration was 8 g/L, the reaction process of T/S-52K pipeline steel electrode was mainly controlled by diffusion. When NaCl concentration was 20 g/L, the reaction process of T/S-52K pipeline steel electrode was controlled by both diffusion and activation polarization. When NaCl concentration was 35 g/L, the electrode reaction process on the surface of the sample was mainly controlled by activation polarization.

Key words:  concentration of Cl-      local corrosion      diffusion control      activated polarization control     
Received:  23 June 2020     
ZTFLH:  TG172.2  
Fund: National Natural Science Foundation of China(51902254);Natural Science Foundation of Shaanxi Province Research Program(2016JM5064);Xi'an Shiyou University Provincial Advantage Discipline of Material Science and Engineering(YS37020203)
Corresponding Authors:  MA Xiaofeng     E-mail:  1098273080@qq.com
About author:  MA Xiaofeng, E-mail: 1098273080@qq.com

Cite this article: 

LV Xianghong, MA Xiaofeng, HU Zhaowei, LI Yuanyuan, WANG Chen. Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 555-559.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.109     OR     https://www.jcscp.org/EN/Y2021/V41/I4/555

Fig.1  Influence of Cl- concentration on the corrosion rate of T/S-52k pipeline steel
Fig.2  Macroscopic corrosion morphologies of T/S-52K pipeline steel before (a~c) and after (d~f) removing the corrosion products formed during immersion for 168 h in 8 g/L (a, d), 20 g/L (b, e) and 35 g/L (c, f) NaCl solutions
Fig.3  Micro corrosion morphologies of T/S-52K pipeline steel before (a~c) and after (d~f) removing the corrosion products formed during immersion for 168 h in 8 g/L (a, d), 20 g/L (b, e) and 35 g/L (c, f) NaCl solutions
Fig.4  EDS analysis results of corrosion products formed on T/S-52K pipeline steel during immersion for 168 h in 8 g/L (a), 20 g/L (b) and 35 g/L (c) NaCl solutions
Fig.5  EIS (a~c) and corresponding equivalent circuit diagrams (d~f) of T/ S-52K pipeline steel after immersion for 72 h in 8 g/L (a, d), 20 g/L (b, e) and 35 g/L (c, f) NaCl solutions
1 Wang W G, Robert D, Zhou A N, et al. Factors affecting corrosion of buried cast iron pipes [J]. J. Mater. Civil Eng., 2018, 30: 04018272
2 Wu M, Guo Z W, Xie F, et al. Corrosion behavior of pipeline steel under anions and sulfate-reducing bacteria: A review [J]. Mater. Rev., 2018, 32: 3435
吴明, 郭紫薇, 谢飞等. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展 [J]. 材料导报, 2018, 32: 3435
3 Wasim M, Shoaib S, Mubarak N M, et al. Factors influencing corrosion of metal pipes in soils [J]. Environ. Chem. Lett., 2018, 16: 861
4 Guo L Y. Research progress of oil and gas pipeline corrosion and protection technology [J]. Total Corros. Control, 2019, 33(3): 87
郭立勇. 油气管道腐蚀及防护技术研究进展 [J]. 全面腐蚀控制, 2019, 33(3): 87
5 Huang G L, Xue M L, Zi Y Z. Review of research on corrosion and protection mechanism of metal materials [J]. World Nonferrous Met., 2018, (6): 217
黄国亮, 薛蔓凌, 字映竹. 金属材料腐蚀与防护机理研究述评 [J]. 世界有色金属, 2018, (6): 217
6 Li Y Z. Analysis of corrosion formation and corrosion protection measures for long term natural gas pipeline [J]. Chem. Enterp. Manag., 2020, (17): 139
黎延志. 长输天然气管道腐蚀的形成与防腐保护措施探析 [J]. 化工管理, 2020, (17): 139
7 Zhu Q J, Hu S M, Chen Y H, et al. Risk analysis of soil corrosion in buried natural gas pipeline network [J]. Oil-Gas Field Surf. Eng., 2019, 38(9): 104
朱庆杰, 胡士明, 陈艳华等. 埋地天然气管网土壤腐蚀的风险分析 [J]. 油气田地面工程, 2019, 38(9): 104
8 Zhu L C, Zhang R K, Gu J P. Discussion on corrosion and protection of buried oil pipelines in coastal areas [J]. Shandong Chem. Ind., 2019, 48(10): 118
朱林超, 张仁坤, 顾佳鹏. 浅谈沿海埋地输油管道腐蚀与防护 [J]. 山东化工, 2019, 48(10): 118
9 Zhao Z Y. Research on the corrosion and protection technology of natural gas pipeline between station [D]. Daqing: Northeast Petroleum University, 2018
赵梓艺. 油田站间天然气管道腐蚀与防护技术研究 [D]. 大庆: 东北石油大学, 2018
10 Zhang Z Q, Chang L M, Hu G X. Corrosion mechanism and protective measures of buried metal oil and gas pipelines [J]. China Petrol. Chem. Stand. Qual., 2017, 37(21): 56
张宗前, 常礼明, 胡光兴. 埋地金属油气管道的腐蚀机理与防护措施 [J]. 中国石油和化工标准与质量, 2017, 37(21): 56
11 Gu T, Tang D Z, Wang Z, et al. Effect of typical ions on the corrosion behavior of carbon steel CO2 environment [J]. Nat. Gas Ind., 2019, 39(7): 106
谷坛, 唐德志, 王竹等. 典型离子对碳钢CO2腐蚀的影响 [J]. 天然气工业, 2019, 39(7): 106
12 Chen X M, Zhang F, Liu M L, et al. Corrosion behaviors of 20 steel deposited under different Cl- concentration and local scale deposition [J]. Mater. Prot., 2019, 52(5): 12
陈晓明, 张锋, 刘明璐等. 不同Cl-浓度和局部垢沉积下20钢的腐蚀行为 [J]. 材料保护, 2019, 52(5): 12
13 Chen C F, Lu M X, Zhao G X, et al. Effects of temperature, Cl- concentration and Cr on electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 848
陈长风, 路民旭, 赵国仙等. 温度、Cl-浓度、Cr元素对N80钢CO2腐蚀电极过程的影响 [J]. 金属学报, 2003, 39: 848
14 Wu S H, Xiao L, Yin L, et al. Electrochemical corrosion behavior of carbon steel covered by rust layer in 3%NaCl solution [J]. Corros. Prot., 2013, 34: 811
吴善宏, 肖丽, 尹力等. 带锈层碳钢在3%NaCl溶液中的腐蚀电化学行为 [J]. 腐蚀与防护, 2013, 34: 811
15 Xie J L, Jin K F, Jiang X B, et al. Corrosion behavior of rusted carbon steel in diluted NaCl solution [J]. Surf. Technol., 2014, 43(2): 55
谢建丽, 金凯峰, 蒋晓斌等. 带锈碳钢在稀NaCl溶液中的腐蚀行为 [J]. 表面技术, 2014, 43(2): 55
16 He Z, Wang X P, Liu Z H, et al. Passivation and pitting of 316L and HR-2 stainless steel in hydrochloric acid liquid membrane environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 17
何壮, 王兴平, 刘子涵等. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀 [J]. 中国腐蚀与防护学报, 2020, 40: 17
17 Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
张浩, 杜楠, 周文杰等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517
18 Xia Y, Cao F H, Chang L R, et al. Corrosion micro-and macro-electrochemical behavior of rusted carbon steel and weathering steel [J]. Chem. J. Chin. Univ., 2013, 34: 1246
夏妍, 曹发和, 常林荣等. 锈层下碳钢和耐候钢的微区和宏观腐蚀电化学行为 [J]. 高等学校化学学报, 2013, 34: 1246
19 Wei D, Xiao K, Chen C F, et al. Localized electrochemical impedance spectroscopy of the corrosion behavior of carbon steel in the alkaline solutions with Cl- and SO42- [J]. Sci. Technol. Rev., 2013, 31(20): 43
魏丹, 肖葵, 陈长风等. 碳钢在含Cl-和SO42-碱性溶液中腐蚀规律的局部交流阻抗 [J]. 科技导报, 2013, 31(20): 43
[1] SHI Weining,YANG Shufeng,LI Jingshe. Correlation Between Cr-depleted Zone and Local Corrosion in Stainless Steels: A Review[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[2] YE Chao, DU Nan, TIAN Wenming, ZHAO Qing, ZHU Li. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[3] LIU Shiqiang, WANG Lida, ZONG Qiufeng, ZHANG Cheng, LIU Guichang. Electrochemical Noise Analysis of Local Pitting Corrosion Behavior of Pure Aluminum[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[4] . The Study on the Underscales Localized Corrosion Behavior of Carbon Steel in Neutral Solution[J]. 中国腐蚀与防护学报, 2008, 28(5): 271-276 .
[5] Xiaogang Li; Dongmei Fu; Chaofang Dong; Lin Liu. THE FITNESS-FOR-SERVICE SOFTWARE SYSTEM FOR LOCAL CORROSION THIN ZONE〖ST〗〖HT〗〖WT〗〖KH1D〗[J]. 中国腐蚀与防护学报, 2002, 22(1): 18-21 .
[6] LIU Hong-wei XU Gang SONG Guang-ling LIN Hai-chao CAO Chu-nan(State Key Laboratory of Corrosion & Protection; Institute of Corrosion and Protection for metals;Chinese Academy of Sciences; Shenyang 110015)MENG Xian-lin PANG Guo-you ZHANG Hong-zhi DONG Jian. EIS INVESTIGATION FOR PERFORMANCE MECHANISM OF PIGMENT Pb_3O_4 IN ORGANIC COATING[J]. 中国腐蚀与防护学报, 1998, 18(1): 52-56.
[7] LIU Hongwei XU Gang SONG Guangling LIN Haichao CAO Chu'nan(State Key Laboratory of Corrosion and Protection;Institute of Corrosion and Protection of Metals;Chinese Academy of Sciences; Shenyang 110015)LIU Yazhou WANG Dechun HE Ruiquan FAN Xiaodong (Daqing. AN EIS INVESTIGATION OF THE MECHANISM OF ALUMINUM POLYPHOSPHATE AS ANTI-RUST PIGMENT[J]. 中国腐蚀与防护学报, 1997, 17(3): 215-220.
No Suggested Reading articles found!