|
|
Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy |
HU Lulu1, ZHAO Xuyang2, LIU Pan1, WU Fangfang2, ZHANG Jianqing1, LENG Wenhua1( ), CAO Fahe1,3( ) |
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China 2. Key Laboratory for Protection Technology of High-Rise Operation, Zhejiang Huadian Equipment Testing Institute Co. Ltd. , Hangzhou 310015, China 3. School of Materials, Sun Yat-sen University, Guangzhou 510006, China |
|
|
Abstract The effect of alternating electric field on the corrosion behavior of A6082-T6 Al-alloy in an artificial atmospheric environment, namely, an electrolyte film on the surface of Al-alloy is studied by means of electrochemical impedance spectroscopy, open circuit potential and cathodic polarization curve measurements, as well as scanning electron microscopy. The results show that, with the decreasing of thickness of electrolyte film, the corrosion rate of A6082-T6 Al-alloy was accelerated. Meanwhile, the applied AC electric field could clearly alter the morphology of localized corrosion type of A6082-T6 Al-alloy, namely transformed from pitting corrosion with a large number of pits to serious exfoliation corrosion.
|
Received: 25 November 2019
|
|
Fund: National Natural Science Foundation of China(51771174);National Materials Corrosion and Protection Data Center |
Corresponding Authors:
LENG Wenhua,CAO Fahe
E-mail: lengwh@zju.edu.cn;caofh5@mail.sysu.eud.cn
|
[1] |
Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods [J]. Corros. Sci., 2012, 59: 324
doi: 10.1016/j.corsci.2012.03.019
|
[2] |
Panagopoulos C N, Georgiou E P, Gavras A G. Corrosion and wear of 6082 aluminum alloy [J]. Tribol. Int., 2009, 42: 886
doi: 10.1016/j.triboint.2008.12.002
|
[3] |
Shang B D, Shi Z M, Wang G, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy [J]. Mater. Des., 2011, 32: 3818
doi: 10.1016/j.matdes.2011.03.016
|
[4] |
Ralston K D, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminium [J]. Electrochim. Acta, 2011, 56: 1729
doi: 10.1016/j.electacta.2010.09.023
|
[5] |
Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
|
[6] |
Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
doi: 10.1016/j.corsci.2008.03.006
|
[7] |
Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
|
[8] |
Deepa P, Padmalatha R. Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media [J]. Arab. J. Chem., 2017, 10 (Suppl.2): S2234
doi: 10.1016/j.arabjc.2013.07.059
|
[9] |
Tian W M, Li S M, Wang B, et alPitting corrosion of naturally aged AA 7075 aluminum alloys with bimodal grain size [J]. Corros. Sci., 2016, 113: 1
|
[10] |
Cao M, Liu L, Yu Z F, et al. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35: 651
doi: 10.1016/j.jmst.2018.09.060
|
[11] |
Qu Q, Yan C W, Wan W, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44: 2789
doi: 10.1016/S0010-938X(02)00076-8
|
[12] |
Šekularac G, Milošev I. Corrosion of aluminium alloy AlSi7Mg0.3 in artificial sea water with added sodium sulphide [J]. Corros. Sci., 2018, 144: 54
doi: 10.1016/j.corsci.2018.08.038
|
[13] |
Tan T, Chen T, Zhang J X, et al. Corrosion behavior of galvanized steel in different simulated service environments [J]. Corros. Prot., 2014, 35: 307
|
|
(谈天, 陈彤, 张俊喜等. 镀锌钢在模拟不同服役环境中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 307)
|
[14] |
Huang H L, Tian J, Zhang G A. Atmospheric corrosion behavior of tin under an alternating current electric field [J]. J. Electr. Mater., 2017, 46: 4359
doi: 10.1007/s11664-017-5395-y
|
[15] |
Luo X, Li X Q, Dong C L. Effect of corrosion products on corrosion process of 6061 aluminium alloy in marine atmosphere [J]. Corros. Prot., 2018, 39: 587
|
|
(罗雪, 李小强, 董重里. 腐蚀产物对6061铝合金海洋大气腐蚀过程的影响 [J]. 腐蚀与防护, 2018, 39: 587)
|
[16] |
Zhang X, Dai N W, Yang Y, et al. Effect of direct current electric field on corrosion mechanism of Zn exposed to simulated industrial environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 451
|
|
(张鑫, 戴念维, 杨燕等. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 451)
doi: 10.11902/1005.4537.2017.159
|
[17] |
Dai N W, Zhang J X, Chen Q M, et al. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment [J]. Corros. Sci., 2015, 99: 295
doi: 10.1016/j.corsci.2015.07.029
|
[18] |
Huang H L, Guo X P, Zhang G A, et al. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer [J]. Corros. Sci., 2011, 53: 3446
doi: 10.1016/j.corsci.2011.04.017
|
[19] |
Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J]. Corros. Sci., 2004, 46: 1649
doi: 10.1016/j.corsci.2003.10.005
|
[20] |
Liu W J, Cao F H, Chen A N, et al. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour [J]. Corros. Sci., 2010, 52: 627
doi: 10.1016/j.corsci.2009.10.031
|
[21] |
Arenas M A, De Damborenea J. Interference by cerium cations during the multi-step zinc dissolution process in a chloride-containing electrolyte [J]. Corros. Sci., 2006, 48: 3196
doi: 10.1016/j.corsci.2005.10.015
|
[22] |
Nguyen T H, Foley R T. The chemical nature of aluminum corrosion: II. The initial dissolution step [J]. J. Electrochem. Soc., 1982, 129: 27
doi: 10.1149/1.2123768
|
[23] |
Hu G Y, Chen S Y, Jiang H L, et al. Effect of RE Ce on microstructure and properties of 7A52 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 1372
|
|
(胡桂云, 陈送义, 姜慧丽等. 稀土Ce对7A52铝合金组织与性能的影响 [J]. 中国有色金属学报, 2016, 26: 1372)
|
[24] |
Li J F, Zhang Z, Cao F H, et al. Exfoliation corrosion and electrochemical impedance behavior of LC4 alloy [J]. Chin. J. Nonferrous Met., 2002, 12: 1189
|
|
(李劲风, 张昭, 曹发和等. LC4铝合金剥蚀及其电化学阻抗行为 [J]. 中国有色金属学报, 2002, 12: 1189)
|
[25] |
Cao C N. Principle of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 158
|
|
(曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 158)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|