Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 342-350    DOI: 10.11902/1005.4537.2019.234
Current Issue | Archive | Adv Search |
Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy
HU Lulu1, ZHAO Xuyang2, LIU Pan1, WU Fangfang2, ZHANG Jianqing1, LENG Wenhua1(), CAO Fahe1,3()
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory for Protection Technology of High-Rise Operation, Zhejiang Huadian Equipment Testing Institute Co. Ltd. , Hangzhou 310015, China
3. School of Materials, Sun Yat-sen University, Guangzhou 510006, China
Download:  HTML  PDF(9179KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of alternating electric field on the corrosion behavior of A6082-T6 Al-alloy in an artificial atmospheric environment, namely, an electrolyte film on the surface of Al-alloy is studied by means of electrochemical impedance spectroscopy, open circuit potential and cathodic polarization curve measurements, as well as scanning electron microscopy. The results show that, with the decreasing of thickness of electrolyte film, the corrosion rate of A6082-T6 Al-alloy was accelerated. Meanwhile, the applied AC electric field could clearly alter the morphology of localized corrosion type of A6082-T6 Al-alloy, namely transformed from pitting corrosion with a large number of pits to serious exfoliation corrosion.

Key words:  alternating electric field      thickness of electrolyte layer      aluminum alloy      corrosion behavior      EIS      microscopic morphology     
Received:  25 November 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51771174);National Materials Corrosion and Protection Data Center
Corresponding Authors:  LENG Wenhua,CAO Fahe     E-mail:  lengwh@zju.edu.cn;caofh5@mail.sysu.eud.cn

Cite this article: 

HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 342-350.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.234     OR     https://www.jcscp.org/EN/Y2020/V40/I4/342

Fig.1  Schematic diagrams of the experiment arrangement for corrosion test under thin electrolyte layer (TEL) and external alternating current field: (a) for the determination of TEL thickness, (b) the whole set-up for electrochemical measurement
Fig.2  Nyquist (a, c, e) and Bode (b, d, f) diagrams of A6082-T6 aluminum alloy immersed for 72 h in bulk solution (a, b) and under thin electrolyte layers with the thicknesses of 256 μm (c, d) and 70 μm (e, f)
Fig.3  Equivalent circuit diagrams for fitting plots of aluminum alloy A6082-T6 in 3.5%NaCl solution under the conditions of EIS without (a) and with (b) inductive arc
Fig.4  Evolutions of Rct (a) and Rf+Rct (b) of A6082-T6 aluminum alloy under 3.5%NaCl thin electrolyte layers with different thicknesses
Fig.5  Effects of AC electric field on the open circuit potential of A6082-T6 aluminum alloy after soaking for 20 min in 3.5%NaCl bulk solution (a) and under thin electrolyte layers with the thicknesses of 350 μm (b), 250 μm (c) and 150 μm (d)
Fig.6  Cathodic polarization curves and -1.0 V ultimate diffusion current of aluminum alloy in 3.5%NaCl bulk solution and under thin electrolyte layers with different thicknesses and AC electric fields of 0 kV/m (a, b), 20 kV/m (c, d), 60 kV/m (e, f) and 100 kV/m (g, h)
Fig.7  SEM images of A6082-T6 aluminum alloy after immersion for 72 h in 3.5%NaCl bulk solution (a) and under thin electrolyte layers with the thicknesses of 350 μm (b), 256 μm (c), 160 μm (d), 90 μm (e) and 70 μm (f) and EDS analysis of the hole (g) and flat surface zone (h) in Fig.7d
Fig.8  SEM images of A6082-T6 aluminum alloy after immersion for 12 h under external AC electric field of 20 kV/m in 3.5%NaCl bulk solution (a) and under thin electrolyte layers with the thicknesses of 350 μm (b), 250 μm (c) and 150 μm (d), and EDS data of the hole (e) and flat surface zone (f) in Fig.8c
Fig.9  SEM morphologies of A6082-T6 aluminum alloy after immersion for 12 h under external AC electric field of 60 kV/m in 3.5%NaCl bulk solution (a) and under thin electrolyte layers with the thicknesses 350 μm (b), 250 μm (c) and 150 μm (d), and enlarged view (e) and EDS result (f) of area I in Fig.9d
Fig.10  SEM morphologies of A6082-T6 aluminum alloy after immersion for 12 h under external AC electric field of 100 kV/m in 3.5%NaCl bulk solution (a) and under thin electrolyte layers with the different thicknesses of 350 μm (b), 250 μm (c) and 150 μm (d), and enlarged view of area I in Fig.10a (e) and EDS result of area II in Fig.10e (f)
[1] Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods [J]. Corros. Sci., 2012, 59: 324
doi: 10.1016/j.corsci.2012.03.019
[2] Panagopoulos C N, Georgiou E P, Gavras A G. Corrosion and wear of 6082 aluminum alloy [J]. Tribol. Int., 2009, 42: 886
doi: 10.1016/j.triboint.2008.12.002
[3] Shang B D, Shi Z M, Wang G, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy [J]. Mater. Des., 2011, 32: 3818
doi: 10.1016/j.matdes.2011.03.016
[4] Ralston K D, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminium [J]. Electrochim. Acta, 2011, 56: 1729
doi: 10.1016/j.electacta.2010.09.023
[5] Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
[6] Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
doi: 10.1016/j.corsci.2008.03.006
[7] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
[8] Deepa P, Padmalatha R. Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media [J]. Arab. J. Chem., 2017, 10 (Suppl.2): S2234
doi: 10.1016/j.arabjc.2013.07.059
[9] Tian W M, Li S M, Wang B, et alPitting corrosion of naturally aged AA 7075 aluminum alloys with bimodal grain size [J]. Corros. Sci., 2016, 113: 1
[10] Cao M, Liu L, Yu Z F, et al. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35: 651
doi: 10.1016/j.jmst.2018.09.060
[11] Qu Q, Yan C W, Wan W, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44: 2789
doi: 10.1016/S0010-938X(02)00076-8
[12] Šekularac G, Milošev I. Corrosion of aluminium alloy AlSi7Mg0.3 in artificial sea water with added sodium sulphide [J]. Corros. Sci., 2018, 144: 54
doi: 10.1016/j.corsci.2018.08.038
[13] Tan T, Chen T, Zhang J X, et al. Corrosion behavior of galvanized steel in different simulated service environments [J]. Corros. Prot., 2014, 35: 307
(谈天, 陈彤, 张俊喜等. 镀锌钢在模拟不同服役环境中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 307)
[14] Huang H L, Tian J, Zhang G A. Atmospheric corrosion behavior of tin under an alternating current electric field [J]. J. Electr. Mater., 2017, 46: 4359
doi: 10.1007/s11664-017-5395-y
[15] Luo X, Li X Q, Dong C L. Effect of corrosion products on corrosion process of 6061 aluminium alloy in marine atmosphere [J]. Corros. Prot., 2018, 39: 587
(罗雪, 李小强, 董重里. 腐蚀产物对6061铝合金海洋大气腐蚀过程的影响 [J]. 腐蚀与防护, 2018, 39: 587)
[16] Zhang X, Dai N W, Yang Y, et al. Effect of direct current electric field on corrosion mechanism of Zn exposed to simulated industrial environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 451
(张鑫, 戴念维, 杨燕等. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 451)
doi: 10.11902/1005.4537.2017.159
[17] Dai N W, Zhang J X, Chen Q M, et al. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment [J]. Corros. Sci., 2015, 99: 295
doi: 10.1016/j.corsci.2015.07.029
[18] Huang H L, Guo X P, Zhang G A, et al. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer [J]. Corros. Sci., 2011, 53: 3446
doi: 10.1016/j.corsci.2011.04.017
[19] Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J]. Corros. Sci., 2004, 46: 1649
doi: 10.1016/j.corsci.2003.10.005
[20] Liu W J, Cao F H, Chen A N, et al. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour [J]. Corros. Sci., 2010, 52: 627
doi: 10.1016/j.corsci.2009.10.031
[21] Arenas M A, De Damborenea J. Interference by cerium cations during the multi-step zinc dissolution process in a chloride-containing electrolyte [J]. Corros. Sci., 2006, 48: 3196
doi: 10.1016/j.corsci.2005.10.015
[22] Nguyen T H, Foley R T. The chemical nature of aluminum corrosion: II. The initial dissolution step [J]. J. Electrochem. Soc., 1982, 129: 27
doi: 10.1149/1.2123768
[23] Hu G Y, Chen S Y, Jiang H L, et al. Effect of RE Ce on microstructure and properties of 7A52 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 1372
(胡桂云, 陈送义, 姜慧丽等. 稀土Ce对7A52铝合金组织与性能的影响 [J]. 中国有色金属学报, 2016, 26: 1372)
[24] Li J F, Zhang Z, Cao F H, et al. Exfoliation corrosion and electrochemical impedance behavior of LC4 alloy [J]. Chin. J. Nonferrous Met., 2002, 12: 1189
(李劲风, 张昭, 曹发和等. LC4铝合金剥蚀及其电化学阻抗行为 [J]. 中国有色金属学报, 2002, 12: 1189)
[25] Cao C N. Principle of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 158
(曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 158)
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[10] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[13] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[14] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
No Suggested Reading articles found!