Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 563-570    DOI: 10.11902/1005.4537.2019.231
Current Issue | Archive | Adv Search |
Corrosion Resistance of Three Zinc-rich Epoxy Coatings
ZHAO Shuyan1,TONG Xinhong2,LIU Fuchun1(),WENG Jinyu2,HAN En-Hou1,LI Xiaohui3,YANG Lin3
1. Key Laboratory of Nuclear Materials and Safety Evaluation, Chinese Academy of Sciences, Shenyang 110016, China
2. Fujian Huadian Kemen Power Generation Co. , Ltd. , Fuzhou 364400, China
3. Huadian Electric Power Research Institute Co. , Ltd. , Hangzhou 310030, China
Download:  HTML  PDF(5551KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-composite coatings composed of nano-silica materials and Zn-rich epoxy coating were prepared, and their corrosion resistance was comparatively assessed with two zinc-rich epoxy coatings without addition of nano-silica by means of pull-off test for adhesion, immersion test, salt spray test and electrochemical impedance spectroscopy, as well as Zn content measurement. The results show that nanocomposite coatings have good performance in adhesion and cohesion, and they can act as good organic barrier to inward migration of corrosive species in the early corrosion stage, then present a moderate cathodic protection effect for a long term in the middle stage and finally the corrosion product of Zn can provide good barrier effect in the later stage, in the contrast, the two zinc-rich epoxy coatings without addition of nano-silica may prematurly break down due to blistering and rusting.

Key words:  coating failure      Zn-rich epoxy coating      cathodic protection      corrosion resistant      power facility      coastal environment     
Received:  19 March 2019     
ZTFLH:  TG174  
Fund: China Huadian Technology Project and Shenyang Science and Technology Plan Project(Y17-1-039)
Corresponding Authors:  Fuchun LIU     E-mail:  fcliu@imr.ac.cn

Cite this article: 

ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 563-570.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.231     OR     https://www.jcscp.org/EN/Y2019/V39/I6/563

Fig.1  Images of coatings for adhesion test: (a) NF coating, (b) HH coating, (c) XS coating
CoatingAdhesionMPaAverage valueMPaDamage area and type
NF

4.57、5.46、4.66

4.70、4.30、7.24

510B, 90B/Y
HH

2.24、4.03、3.82

2.98、4.79、3.90

485B, 15B/Y
XS

2.97、3.49、2.95

5.28、3.60、2.40

280B, 20B/Y
Table 1  Data of coating adhesion
Fig.2  Images of NF coating (a1, a2), HF coating (b1, b2) and XS coating (c1, c2) samples after salt spray tests for 1000 h
Fig.3  SEM images of cross sections of NF coating (a1, a2), HH coating (b1, b2) and XS coating (c1, c2) samples after salt spray tests for 1000 h
Fig.4  EDS analysis of cross sections of three kinds of coating samples after salt spray tests for 1000 h: (a) positions 1 and 3, (b) positions 2 and 4, (c) positions 5 and 6 in Fig.3
Fig.5  SEM images of NF coating (a), HH coating (b) and XS coating (c) samples after salt spray tests for 1000 h
Fig.6  Images of three kinds of coating samples after immersion tests for 1500 h: (a) NF coating, (b) HH coating, (c) XS coating
Fig.7  Corrosion potential of the coated panels with differ-ent immersing time in 3.5%NaCl solution
Fig.8  Nyquist (a, c, e) and Bode (b, d, f) plots of NF coating (a, b), HH coating (c, d) and XS coating (e, f)
Fig.9  Equivalent electric circuit diagrams of the coated panels at early immersion (a), middle immersion (b) and later immersion (c): Qc-coating capacitance, Rc-coating resistance, QZn-Zn capacitance, RZn-Zn resistance, Qdl-electric double layer capacitor, Rct-charge transfer resistance
Fig.10  Change of resistance and capacitance with immersion time: (a) coating resistance, (b) coating capacitance, (c) resistance of Zn reaction product interface, (d) capacitance of Zn reaction product interface
[1] Beiro M, Collazo A, Izquierdo M, et al. Characterisation of barrier properties of organic paints: The zinc phosphate effectiveness [J]. Prog. Org. Coat., 2003, 46: 97
[2] Shao Y W, Jia C, Meng G Z, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel [J]. Corros. Sci., 2009, 51: 371
[3] Schaefer K, Miszczyk A. Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc [J]. Corros. Sci., 2013, 66: 380
[4] Marchebois H, Savall C, Bernard J, et al. Electrochemical behavior of zinc-rich powder coatings in artificial sea water [J]. Electrochim. Acta, 2004, 49: 2945
[5] Zeng D F, Tao N W, Jiang S W, et al. NORSOK M-501 test method for heavy-duty anticorrosive marine coatings [J]. Coat. Ind., 2015, 45(8): 51
[5] (曾登峰, 陶乃旺, 江水旺等. 海工重防腐涂料NORSOK M-501试验方法介绍及结果讨论 [J]. 涂料工业, 2015, 45(8): 51)
[6] Shreepathi S, Bajaj P, Mallik B P. Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: Role of Zn content on corrosion protection mechanism [J]. Electrochim. Acta, 2010, 55: 5129
[7] Zhang R C, Tian Y L, Liu B P. Effect of PVC and CPVC on anticorrosivity of epoxy zinc-rich primer [J]. Shanghai Coat., 2009, 47(9): 45
[7] (张汝才, 田玉廉, 刘佰平. PVC和CPVC对环氧富锌底漆防腐性的影响 [J]. 上海涂料, 2009, 47(9): 45)
[8] Rodríguez M T, Gracenea J J, Saura J J, et al. The influence of the critical pigment volume concentration (CPVC) on the properties of an epoxy coating: Part II. Anticorrosion and economic properties [J]. Prog. Org. Coat., 2004, 50: 68
[9] Yang Z B, Li Y D, Yang Z L, et al. Application of flaky zinc powder to zinc-rich coating field and its technology development tendency [J]. Electroplat. Finish., 2011, 30(2): 62
[9] (杨振波, 李运德, 杨忠林等. 片状锌粉在富锌涂料领域的应用及其技术发展趋势 [J]. 电镀与涂饰, 2011, 30(2): 62)
[10] Yu X H, Zhu X Y, Guo Z Z, et al. Development of amicable flake zinc based heavy duty anticorrosive epoxy coating [J]. Surf. Technol., 2005, 34(1): 53
[10] (于晓辉, 朱晓云, 郭忠诚等. 鳞片状锌基环氧富锌重防腐涂料的研制 [J]. 表面技术, 2005, 34(1): 53)
[11] Jagtap R N, Nambiar R, Hassan S Z, et al. Predictive power for life and residual life of the zinc rich primer coatings with electrical measurement [J]. Prog. Org. Coat., 2007, 58: 253
[12] Liu B, Li Y, Wang F H. Study on the effect of zinc pigments size on the electrochemical behavior of organic zinc-rich coatings [J]. J. Chin. Sci. Prot. Technol., 2003, 23: 350
[12] (刘斌, 李瑛, 王福会. 锌粉颜料尺寸对有机富锌涂层电化学行为的影响 [J]. 中国腐蚀与防护学报, 2003, 23: 350)
[13] Xu L, Liu F C, Wang Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings [J]. Prog. Org. Coat., 2018, 114: 90
[14] Plagemann P, Weise J, Zockoll A. Zinc magnesium-pigment rich coatings for corrosion protection of aluminum alloys [J]. Prog. Org. Coat., 2013, 76: 616
[15] Jagtap R N, Patil P P, Hassan S Z. Effect of zinc oxide in combating corrosion in zinc-rich primer [J]. Prog. Org. Coat., 2008, 63: 389
[16] Gergely A, Bertóti I, T?r?k T, et al. Corrosion protection with zinc -rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole -deposited alumina monohydrate particles [J]. Prog. Org. Coat., 2013, 76: 17
[17] Cheng L H, Liu C L, Han D J, et al. Effect of graphene on corrosion resistance of waterborne inorganic?zinc-rich?coatings [J]. J. Alloy. Compd., 2019, 774: 255
[18] Ding R, Zheng Y, Yu H B, et al. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings [J]. J. Alloy. Compd., 2018, 748: 481
[19] Pereira D, Scantlebury J D, Ferreira M G S, et al. The application of electrochemical measurements to the study and behaviour of Zinc-rich coatings [J]. Corros. Sci., 1990, 30: 1135
[20] ? Knudsen O, Steinsmo U, Bjordal M. Zinc-rich primers-Test performance and electrochemical properties [J]. Prog. Org. Coat., 2005, 54: 224
[21] Shi H W, Liu F C, Han E-H. The corrosion behavior of zinc-rich paints on steel: Influence of simulated salts deposition in an offshore atmosphere at the steel/paint interface [J]. Surf. Coat. Technol., 2011, 205: 4532
[22] Uhlig H H, Revie R W. Corrosion and Corrosion Control [M]. New York: Wiley-Interscience, 1985: 263
[23] Huo S Z. Electrochemical Protection [M]. Beijing: Chemical Industry Press, 1988: 20
[23] (火时中. 电化学保护 [M]. 北京: 化学工业出版社, 1988: 20)
[24] Abreu C M, Izquierdo M, Merino P, et al. A new approach to the determination of the cathodic protection period in zinc-rich paints [J]. Corrosion, 1999, 55: 1173
[25] Liang Y C, Zhao S Y, Nie M, et al. Influence of curing agents on anti-corrosion properties of nanocomposite Zinc-rich coatings [J]. Chin. J. Mater. Res., 2012, 26: 652
[25] (梁永纯, 赵书彦, 聂铭等. 固化剂对纳米复合环氧富锌涂层耐腐蚀性的影响 [J]. 材料研究学报, 2012, 26: 652)
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[3] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[4] ZHANG Tianyi,LIU Wei,FAN Yueming,LI Shimin,DONG Baojun,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[5] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[7] Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[8] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[9] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[10] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[11] Jianchun ZHANG,Longfei ZUO,Jinyang JIANG,Han MA,Dan SONG. Microstructure and Properties of Seawater Corrosion Resistant Rebar Steel 00Cr10MoV[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[12] Jianchun ZHANG, Han MA, Longfei ZUO, Yang LI. Corrosion Behavior of 20MnSiCrV Corrosion Resistant Rebar in Chloride Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(5): 461-466.
[13] Shuang YANG,Nan TANG,Maocheng YAN,Kangwen ZHAO,Cheng SUN,Jin XU,Changkun YU. Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[14] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[15] FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
No Suggested Reading articles found!