Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (6): 513-519    DOI:
Current Issue | Archive | Adv Search |
THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES
WU Gang1, GENG Yufeng2, JIA Xiaolin3, SUN Shuangqing3, HU Songqing3
1. Production Technology Research Institute, HuaBei Oil Field Branch Company, China National Petroleum Corporation, Renqiu 062500
2. Supply Department, Sinopec Pipeline Storage and Transportation Corporation, Xuzhou 221008
3. College of Science, China University of Petroleum, Qingdao 266580
Download:  PDF(1304KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resisting property of four corrosion inhibitors in HCl on mild steel, including 2-methyl-5-hexylisoxazolidine (A), 2-methyl-5-dodecylisoxazolidine (B), 2-isopropyl-5-dodecylisoxazolidine (C) and 2-tert-butyl-5-dodecylisoxazolidine (D), was theoretically evaluated using quantum chemistry calculations and molecular dynamics simulations. The corrosion inhibition mechanism was analyzed. The quantum chemical calculations indicated that the frontier orbitals of four molecules were located in the isoxazole ring and side chain of the molecules. The electrophilic attack centers of the inhibitors were on the N and O atoms. Molecular dynamics calculation shows that under liquid conditions the polarity head group of isoxazolidine corrosion inhibitors priority adsorbed in the metal surface, while the alkyl chain stayed in the water phase with distortion. The strength of molecules adsorbed on the surface enhanced with increasing the number of methyl in the molecular heads. The theoretical evaluation was shown to be in complete accord with experiment results.

Key words:  Isoxazolidines      corrosion inhibitor      quantum chemistry calculation      molecular dynamics simulation     
Received:  02 June 2012     
ZTFLH:  TG174  
Corresponding Authors:  HU Songqing     E-mail:  ccupc@163.com

Cite this article: 

WU Gang, GENG Yufeng, JIA Xiaolin, SUN Shuangqing, HU Songqing. THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 513-519.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I6/513

 


[1] Lin H C. Progress in research of inhibitors[J]. Corros. Sci. Prot. Technol., 1997, 9(4): 308-313

(林海潮. 缓蚀剂研究的进展[J]. 腐蚀科学与防护技术, 1997, 9(4): 308-313)

[2] Zhang T S, Zhang H, Gao H. Corrosion Inhibitor[M]. Beijing: Chemical Industry Press, 2008: 3-9

(张天胜, 张浩, 高红. 缓蚀剂[M]. 北京: 化学工业出版社, 2008: 3-9)

[3] Vosta J, Eliasek J. A quantum chemical study of the corrosion inhibition of iron by means of aniline derivatives in hydrochloric acid[J]. Corrosion, 1976, 32(5): 183-185

[4] Rodriguez Valdez L M, Martinez Villafane A, Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties[J]. J. Mol. Struct., 2005, 713(1-3): 65-70

[5] Sein L T, Wei Y, Jansen S A. Corrosion inhibition by aniline oligomers through charge transfer: a DFT approach[J]. Synth. Met., 2004, 143(1): 1-12

[6] Bereket G, Ogretir C, Yurt A. Quantum mechanical calculations on some 4-methyl-5-substituted imidazole derivatives as acidic corrosion inhibitor for zinc[J]. J. Mol. Struct., 2001, 571(1-3): 139-145

[7] Lashkari M, Arshadi M R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects[J]. Chem. Phys., 2004, 299(1): 131-137

[8] Guo X D, Huang S P, Teng J W, et al. Study on the adsorption of water on nanZSM-5 type zeolite: molecular simulation[J]. Acta. Phys-Chim. Sin., 2006, 22(3): 270-174

(郭向丹, 黄世萍, 滕加伟等. 水在NanZSM-5型分子筛中吸附的研究: 分子模拟[J]. 物理化学学报, 2006, 22(3): 270-174)

[9] Ungerer P, Nieto-Draghi C, Rousseau B, et al. Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions[J]. J. Mol. Liq., 2007, 134(1-3): 71-89

[10] Srivastava P, Chapman W G, Laibinis P E. Molecular dynamics simulation of oxygen transport through ω-alkoxy-n-alkanethiolate self-assembled monolayers on gold and copper[J]. Langmuir, 2009, 25(5): 2689-2695

[11] Hou T J, Zhu L L, Xu X J, et al. Diffusion of benzene in MCM-22 zeolite: A molecular dynamics study[J]. Acta Phys-Chim. Sin., 2000, 16(8): 701-707

(侯廷军, 朱丽荔, 徐筱杰等. MCM-22型分子筛中苯分子吸附行为的分子动力学模拟[J]. 物理化学学报, 2000, 16(8): 701-707)

[12] Han Z W, Liao C, Zhou W. Molecular dynamics simulation of adsorption of PLL (poly-lysine) on crystal lattice interfaces[J]. Comp. Appl. Chem., 2007, 24(5): 703-708

(韩振为, 廖川, 周薇. 分子动力学模拟聚赖氨酸在晶格界面上的吸附[J]. 计算机与应用化学, 2007, 24(5): 703-708)

[13] Zhang J, Li Z P, Zhao W M, et al. Theoretical study on corrosion inhibition performance of imidazoline inhibitors[J]. Acta Petro. Sin., 2008, 24(5): 58-604

(张军, 李中谱, 赵卫民等. 咪唑啉缓蚀剂缓蚀性能的理论研究[J]. 石油学报(石油加工), 2008, 24(5): 58-604)

[14] Wang Y F, You Q, Zhao F L. Inhibition properties of a novel imidazoline complex for A3 steel in salt water saturated by CO2[J]. Acta Petro. Sin., 2006, 22(3): 74-78

(王业飞, 由庆, 赵福麟. 一种新型咪唑啉复配缓蚀剂对A3钢在饱和CO2盐水溶液中的缓蚀性能[J]. 石油学报(石油加工), 2006, 22(3): 74-78)

[15] Cruzj J, Martinez-Aguilera L M R, Salcedo R, et al. Reactivity properties of derivatives of 2-imidazoline: an ab initio DFT study[J]. Int. J. Quantum Chem., 2001, 85(4-5): 546-556

[16] Ali S A, Saeed M T, Rahman S U. The isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic medium[J]. Corros Sci, 2003, 45(2): 253-266

[17] Ali S A, El-Shareef A M, Al-Ghamdi R F, et al. The isoxazolidines: the effects of steric factor and hydrophobic chain length on the corrosion inhibition of mild steel in acidic medium[J]. Corros. Sci., 2005, 47(11): 2659-2678

[18] Duak M, Kaminski J W, Weso owski T A. Equilibrium geometries of noncovalently bound intermolecular complexes derived from subsystem formulation of density functional theory[J]. J. Chem. Theory Comp., 2007, 3(3): 735-745

 

[19] Franzen S. Carbonmonoxy rebinding kinetics in H93G myoglobin: separation of proximal and distal side effects[J]. J. Phys. Chem., 2002, 106(17) B: 4533-4542

[20] Zhang J, Zhao W M, Guo W Y, et al. Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitors[J]. Acta Phys-Chim Sin, 2008, 24(7): 1239-1244

(张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239-1244)

[21] Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990, 92(1): 508-517

[22] Delley B. Fast calculation of electrostatics in crystals and large molecules[J]. J. Phys. Chem., 1996, 100(15): 6107-6110

[23] Delley B. From molecules to solids with the Dmol3 approach[J]. J. Chem. Phys., 2000, 113(18): 7756-7764

[24] Ramachandran S, Tsai B L, Blanco M, et al. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines[J]. Langmuir, 1996, 12(26): 6419-6428

[25] Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. J. Phys. Chem., 1998, 102(38) B: 7338-7364

[26] Heermann D W, Translated by Qin K C. Computer Simulation Methods in the Theoretical Physics[M]. Beijing: Peking University Press, 1996: 45-47

(Heermann D W. 秦克成译. 理论物理学中的计算机模拟方法[M]. 北京: 北京大学出版社, 1996: 45-47)

[27] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. J. Chem. Phys., 1980, 72(4): 2384-2393

[28] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford: Clarendon Press, 1987: 85-97

[29] Maitland G C, Rigby M, Smith E B, et al. Intermolecular Forces: Their Origin and Determination[M]. London: Oxford University Press, 1987. 327-330

[30] Hu S Q, Jia X L, Hu J C, et al. Quantum chemical analysis on molecular structures and inhibitive properties of imidazoline inhibitors[J]. J. China Univ. Petro., 2011, 35(1): 146-150

(胡松青, 贾晓林, 胡建春等. 咪唑啉缓蚀剂分子结构与缓蚀性能的量子化学分析[J]. 中国石油大学学报, 2011, 35(1): 146-150)

[31] Khalil N. Quantum chemical approach of corrosion inhibition[J]. Electrochim.Acta, 2003, 48(18): 2635-2640

[32] Xia M Z, Zhao W, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors[J]. Corros. Sci. Prot. Technol., 2002, 14(6): 311-314

(夏明珠, 赵维, 雷武等. 含P有机缓蚀剂缓蚀性能的量子化学研究[J]. 腐蚀科学与防护技术, 2002, 14(6): 311-314)

[33] Zhao W, Xia M Z, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors[J]. J. Chin. Soc. Corros. Prot., 2002, 22(4): 217-220

(赵维, 夏明珠, 雷武等. 有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究[J]. 中国腐蚀与防护学报, 2002, 22(4): 217-220)

[34] Taner A, Kandemirli F, Ebenso E E, et al. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium[J]. Corros. Sci., 2009, 51(1): 35-47

[35] Zhang S G, Yang P. The molecular structure and corrosion inhibitor efficiency of some cyclic nitrogen compounds:an DFT study[J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 240-244

(张士国, 杨频. 用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系[J]. 中国腐蚀与防护学报, 2004, 24(4): 240-244)

[36] Gomez B, Likhanova N V, Dominguez-Aguilar M A, et al. Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles[J]. J. Phys. Chem., 2006, 110(18) B: 8928-8934

[37] Hu S Q, Hu J C, Gao Y J, et al. Corrosion inhibition and adsorption of lauryl-imidazolines for Q235 steel[J]. CIESC J., 2011, 62(1): 147-155

(胡松青, 胡建春, 高元军等. 月桂基咪唑啉对Q235钢的缓蚀吸附作用[J]. 化工学报, 2011, 62(1): 147-155)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[9] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[10] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[11] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[12] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[13] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[14] Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[15] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
No Suggested Reading articles found!