Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 60-70    DOI: 10.11902/1005.4537.2020.015
Current Issue | Archive | Adv Search |
Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel
BAI Yunlong1,2, SHEN Guoliang2, QIN Qingyu1, WEI Boxin1, YU Changkun1, XU Jin1(), SUN Cheng1
1.Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 110870, China
Download:  HTML  PDF(22175KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the thiourea base imidazoline quaternary ammonium salt corrosion inhibitor on the corrosion performance of X80 pipeline steel in three simulated oil-field waters with different pH was assessed by means of polarization curve measurement, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET) as well as characterization of corrosion morphology and corrosion products. Polarization curve measurement showed that the corrosion current density was the lowest in the water of pH7.2, followed by pH10.5, while the corrosion current density was the highest in the water of pH3.5,and as the temperature increased, the corrosion current density also increased. The EIS results showed that the diameter of capacitive reactance arc was the largest in the water of pH7.2, accordingly, the Rct in the fitting result was significantly higher than those in the other two waters. The SVET analysis revealed that the adsorption film formation on the surface of pipeline steel in the water of pH7.2 was better than in the other two waters, while the ion current density decreased with time, indicating that the corrosion inhibitor molecule is more suitable for the case in the water of pH7.2. The film formation by adsorption reduces the ion current density, thereby effectively reduces the corrosion reaction rate. In conclusion, the corrosion inhibitor is much suitable for use in neutral waters and it has good corrosion inhibition effect in the temperature range of 40~60 ℃.

Key words:  IM-S1      corrosion inhibitor      simulated oil-field water      X80 pipeline steel      electrochemistry      SVET     
Received:  15 January 2020     
ZTFLH:  TQ252.3  
Fund: National Natural Science Foundation of China(51771213)
Corresponding Authors:  XU Jin     E-mail:  xujin@imr.ac.cn

Cite this article: 

BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 60-70.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.015     OR     https://www.jcscp.org/EN/Y2021/V41/I1/60

Fig.1  FTIR spectra of thiourea imidazoline quaternary ammonium salt
Fig.2  Molecular structure diagram of thiourea-imidazo-line quaternary ammonium salt
Fig.3  Calculated corrosion rates and inhibition efficiencies of X80 pipeline steel in simulated oil-field water with and without corrosion inhibitor under pH3.5 (a), pH7.2 (b) and pH10.5 (c)
Fig.4  Inhibition efficiencies of X80 pipeline steel in simulated oil-field water with corrosion inhibitor under different pH conditions
Fig.5  Polarization curves of X80 pipeline steel in simulated oil-field water with and without corrosion inhibitor under different conditions: (a) 25 ℃, (b) 40 ℃, (c) 60 ℃
InhibitorTpHEcorrmVIcorrμA·cm-2βαmV·dec-1β?mV·dec-1η%
Blank253.5-701.69124.6387.50455.64---
7.2-708.0895.5085.63350.59---
10.5-715.3546.7791.69433.31---
403.5-703.83129.7259.69569.58---
7.2-752.6596.1693.41318.48---
10.5-747.6148.98104.83220.05---
603.5-705.60144.5498.41902.75---
7.2-757.23109.6440.13421.17---
10.5-733.6151.2852.08261.80---
80 mg/L253.5-611.4215.8547.841188.5987.3
7.2-671.762.3321.79182.0197.6
10.5-664.5120.1166.79691.2957.0
403.5-690.8322.9167.81274.6482.3
7.2-673.172.6951.25179.4497.2
10.5-685.6720.8959.29252.1357.3
603.5-732.4035.4854.52224.3175.5
7.2-663.614.8942.71253.7295.5
10.5-722.2522.3850.15186.9956.4
Table 1  Polarization parameters of X80 pipeline steel in simulated oil-field water with and without corrosion inhibitor under different pH conditions
Fig.6  Nyquist plots of X80 pipeline steel in simulated oil-field water with and without corrosion inhibitor under different pH conditions: (a) 25 ℃, (b) 40 ℃, (c) 60 ℃
Fig.7  Equivalent circuit diagram
Inhibitor

T

pH

Rs

Ω·cm2

CPEdl, Yo

S·sn·cm-2

n

Rct

Ω·cm2

η

%

Blank253.53.733.534×10-40.7723350.1---
7.26.651.506×10-40.8511412.4---
10.57.425.596×10-30.7686723.6---
403.53.315.878×10-40.6887134.5---
7.23.685.649×10-40.7662299.3---
10.55.322.44×10-30.6243604.6---
603.53.924.98×10-40.7303118.5---
7.23.645.475×10-40.7932257.0---
10.55.533.738×10-30.5908372.2---
80 mg/L253.511.786.006×10-40.8291264586.8
7.214.003.136×10-40.7605467091.2
10.514.041.553×10-30.6660185961.1
403.513.453.83×10-40.7210134390.0
7.217.013.141×10-40.7932447893.3
10.57.6593.979×10-30.6378133454.7
603.513.118.772×10-40.7998555.778.7
7.212.966.584×10-40.8127232288.9
10.59.2112.97×10-30.6461729.849.0
Table 2  EIS parameters of X80 pipeline steel in simulated oil-field water with and without corrosion inhibitor under different pH conditions
Fig.8  Micro-morphologies of corrosion product of X80 pipeline steel in different pH in simulated oil-field water: (a) 25 ℃, pH3.5 without IM-S1; (b) 25 ℃, pH7.2 without IM-S1; (c) 25 ℃, pH10.5 without IM-S1; (d) 25 ℃, pH3.5 with IM-S1; (e) 25 ℃, pH7.2 with IM-S1; (f) 25 ℃, pH10.5 with IM-S1; (g) 40 ℃, pH3.5 with IM-S1; (h) 40 ℃, pH7.2 with IM-S1; (i) 40 ℃, pH10.5 with IM-S1; (j) 60 ℃, pH3.5 with IM-S1; (k) 60 ℃, pH7.2 with IM-S1; (l) 60 ℃, pH10.5 with IM-S1
Fig.9  Micro-morphologies of X80 pipeline steel in simulated oil-field water: (a) 25 ℃, pH3.5 without IM-S1; (b) 25 ℃, pH7.2 without IM-S1; (c) 25 ℃, pH10.5 without IM-S1; (d) 25 ℃, pH3.5 with IM-S1; (e) 25 ℃, pH7.2 with IM-S1; (f) 25 ℃, pH10.5 with IM-S1; (g) 40 ℃, pH3.5 with IM-S1; (h) 40 ℃, pH7.2 with IM-S1; (i) 40 ℃, pH10.5 with IM-S1; (j) 60 ℃, pH3.5 with IM-S1; (k) 60 ℃, pH7.2 with IM-S1; (l) 60 ℃, pH10.5 with IM-S1
Fig.10  SVET images of X80 pipeline steel in simulated oil-field water without corrosion inhibitor: (a) pH3.5, 0 h; (b) pH3.5, 1 h; (c) pH3.5, 48 h; (d) pH7.2, 0 h; (e) pH7.2, 1 h; (f) pH7.2, 48 h; (g) pH10.5, 0 h; (h) pH10.5, 1 h; (i) pH10.5
InhibitorpH0 h1 h48 h
Blank3.57.816.443.85
80 mg/L2.021.990.96
Blank7.26.102.731.58
80 mg/L1.160.780.32
Blank10.59.303.682.89
80 mg/L4.124.012.25
Table 3  Current density of X80 pipeline steel in simulated oil-field water with or without corrosion inhibitor
Fig.11  SVET images of X80 pipeline steel in simulated oil-field water with 80 mg/L corrosion inhibitor: (a) pH3.5, 0 h; (b) pH3.5, 1 h; (c) pH3.5, 48 h; (d) pH7.2, 0 h; (e) pH7.2, 1 h; (f) pH7.2, 48 h; (g) pH10.5, 0 h; (h) pH10.5, 1 h; (i) pH10.5, 48 h
1 Zhang C. Discussion on how to improve oil and gas field recovery [J]. Chem. Enterp. Manag., 2016, (23): 199
张超. 如何提高油气田开发采收率的探讨 [J]. 化工管理, 2016, (23): 199
2 Tan Z G, Lu T, Liu Y X, et al. Technical ideas of recovery enhancement in the Sulige Gasfield during the 13th Five- Year Plan [J]. Nat. Gas Ind., 2016, 36(3): 30
谭中国, 卢涛, 刘艳侠等. 苏里格气田“十三五”期间提高采收率技术思路 [J]. 天然气工业, 2016, 36(3): 30
3 Chen G, Shi H J. Factor analysis on equipment and pipeline corrosion of gas gathering stations in Puguang gas field [J]. Oil-Gasfield Surf. Eng., 2017, 36(4): 90
陈广, 石海军. 普光气田集气站场设备管线腐蚀因素解析 [J]. 油气田地面工程, 2017, 36(4): 90
4 Mei P, Ai J Z, Chen W, et al. Corrosion inhibitor resistant to carbon dioxide and its inhibiting mechanism [J]. Acta Petrol. Sin., 2004, 25(5): 104
梅平, 艾俊哲, 陈武等. 抑制二氧化碳腐蚀的缓蚀剂及其缓蚀机理研究 [J]. 石油学报, 2004, 25(5): 104
5 Zhou H L, Cao H X. Research on tube corrosion of natural gases [J]. Inner Mongolia Petrochem. Ind., 2009, (13): 5
周虹伶, 曹辉祥. 天然气管道腐蚀研究 [J]. 内蒙古石油化工, 2009, (13): 5
6 Javidi M, Khodaparast M. Inhibitive performance of monoethylene glycol on CO2 corrosion of API 5L X52 steel [J]. J. Mater. Eng. Perform., 2015, 24: 1417
7 Zhang G A, Cheng Y F. Corrosion of X65 steel in CO2-saturated oilfield formation water in the absence and presence of acetic acid [J]. Corros. Sci., 2009, 51: 1589
8 Sığırcık G, Yildirim D, Tüken T. Synthesis and inhibitory effect of N, N'-bis (1-phenylethanol) ethylenediamine against steel corrosion in HCl Media [J]. Corros. Sci., 2017, 120: 184
9 Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions V. The inhibition characteristics of imidazoline derivatives in H2S solutions [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 321
杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究V. 咪唑啉衍生物在H2S溶液中的缓蚀作用特征 [J]. 中国腐蚀与防护学报, 2001, 21: 321
10 Khodyrev Y P, Batyeva E S, Badeeva E K, et al. The inhibition action of ammonium salts of O,O′-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel [J]. Corros. Sci., 2011, 53: 976
11 Yu J H, Peng Q. Present situation of imidazoline pickling inhibitors [J]. Corros. Prot., 2003, 24: 473
于建辉, 彭乔. 咪唑啉型酸洗缓蚀剂的研究现状 [J]. 腐蚀与防护, 2003, 24: 473
12 Heydari M, Javidi M. Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions [J]. Corros. Sci., 2012, 61: 148
13 Zhang K G, Xu B, Yang W Z, et al. Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Corros. Sci., 2015, 90: 284
14 Zhang G A, Chen C F, Lu M X, et al. Evaluation of inhibition efficiency of an imidazoline derivative in CO2 containing aqueous solution [J]. Mater. Chem. Phys., 2007, 105: 331
15 Du M, Wang B, Zhang J, et al. Effect of temperature on the corrosion inhibition of a novel imidazoline inhibitor for carbon dioxide [J]. Mater. Prot., 2010, 43(9): 20
杜敏, 王彬, 张静等. 温度对新型咪唑啉抑制CO2腐蚀的影响 [J]. 材料保护, 2010, 43(9): 20
16 Trethewey K R, Sargeant D A, Marsh D J, et al. Applications of the scanning reference electrode technique to localized corrosion [J]. Corros. Sci., 1993, 35: 127
17 Wang L W, Du C W, Liu Z Y, et al. SVET characterization of localized corrosion of welded X70 pipeline steel in acid solution [J]. Corros. Prot., 2012, 33: 935
王力伟, 杜翠薇, 刘智勇等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究 [J]. 腐蚀与防护, 2012, 33: 935
18 Tie Z W, Wei Z L, Zhao J M. Hydrolysis of an imidazoline corrosion inhibitor under different conditions [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2017, 44(5): 66
铁志伟, 魏振禄, 赵景茂. 咪唑啉类缓蚀剂在不同条件下的水解研究 [J]. 北京化工大学学报 (自然科学版), 2017, 44(5): 66
19 Schultze J W. Electrochemical materials science: An introduction to Symposium 4 of the 50th Anniversary of ISE ‘Electrochemistry and Materials: Synthesis and Characterization’ [J]. Electrochim. Acta, 2000, 45: 3193
20 Wang J, Cao C N, Chen J J, et al. Anodic desorption of inhibitors: Ⅰ. The phenomenon of anodic desorption of inhibitors [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 241
王佳, 曹楚南, 陈家坚等. 缓蚀剂阳极脱附现象的研究: I. 缓蚀剂阳极脱附现象 [J]. 中国腐蚀与防护学报, 1995, 15: 241
21 Chinese Society for Corrosion and Protection. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1994
中国腐蚀与防护学会. 腐蚀电化学 [M]. 北京: 化学工业出版社, 1994
22 Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions Ⅵ. The relationship between molecular structure of imidazoline derivatives and inhibition performance in H2S solutions [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 148
杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究 Ⅵ. H2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系 [J]. 中国腐蚀与防护学报, 2002, 22: 148
23 Zhang W W, Ma R, Liu H H, et al. Electrochemical and surface analysis studies of 2-(quinolin-2-yl) quinazolin-4 (3H)-one as corrosion inhibitor for Q235 steel in hydrochloric acid [J]. J. Mol. Liq., 2016, 222: 671
24 Hong T, Sun Y H, Jepson W P. Study on corrosion inhibitor in large pipelines under multiphase flow using EIS [J]. Corros. Sci., 2002, 44: 101
[1] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[2] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[3] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[4] WANG Lizi, HUANG Miao, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[5] MA Qi, CAI Jingshun, MU Song, ZHOU Xiaocheng, LIU Kai, LIU Jianzhong, LIU Jiaping. Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen[J]. 中国腐蚀与防护学报, 2021, 41(5): 659-666.
[6] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[7] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[8] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[9] TAN Bochuan, ZHANG Shengtao, LI Wenpo, XIANG Bin, QIANG Yujie. Food Spices 2,5-Dihydroxy-1,4-dithiane as an Eco-friendly Corrosion Inhibitor for X70 Steel in 0.5 mol/L H2SO4 Solution[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[10] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[11] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[14] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[15] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[1] Wang Yanhua; Zhang Tao; Wang jia; Wang Fuhui. Applications of Kelvin Probe Technique in the Studies of Atmospheric Corrosion[J]. J Chin Soc Corr Pro, 2004, 24(1): 59 -64 .
[2] Fahe Cao; Zhao Zhang; Yanyan Shi; Jianqing Zhang; Chunan Cao. CORRELATION BETWEEN SEAWATER ENVIRONMENTAL FACTORS AND MARINE CORROSION RATE USING ARTIFICIAL NEURAL NETWORK ANALYSIS[J]. J Chin Soc Corr Pro, 2005, 25(1): 7 -10 .
[3] Yuefei Zhang. High Temperature Oxidation Resistance of the Plasma Titanizing on Copper Surface by Double Glow Discharge[J]. J Chin Soc Corr Pro, 2004, 24(3): 139 -142 .
[4] Mingxing Li. CRACK PROPAGATION QUANTITATIVE MODELS OF X70 PIPELINE STEEL IN THE SYNTHETIC SOIL SOLUTION[J]. J Chin Soc Corr Pro, 2004, 24(3): 163 -167 .