Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 381-390    DOI: 10.11902/1005.4537.2017.053
Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution
Zheng LIU(), Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemical and Biological Engineering, Guilin University of Technology, Guilin 541004, China
Download:  HTML  PDF(5322KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three polyethylene glycol (400) lauric acid monoester Schiff base surfactants (M1, M2 and M3) were synthesized and characterized. The adsorption behavior and the effect of the group of surfactant molecules on the adsorption properties about M1, M2, M3 on the metal Zn surface were investigated by means of molecular dynamics simulation method. While the corrosion inhibition performance of the three surfactants on alkaline Zn-electrode was assessed by means of mass loss method, electrochemical impedance spectroscopy and scanning electron microscopy. It showed that M3 exhibited the best corrosion inhibition, and the corrosion inhibition efficiency was 92% when the concentration reached 1.0 mmol/L. The Schiff base surfactant molecules adsorbed on Zn surface parallelly to form a dense molecular adsorption film. What's more, the ranking of the adsorption energy of the three surfactants was M3>M2>M1, and that of the adsorption rate was M3>M2>M1. M3 had better corrosion inhibition performance for alkaline zinc electrode, and had better inhibition effect on zinc dendrite.

Key words:  surfactant      adsorption behavior      molecular dynamics simulation      zinc surface      corrosion inhibition performance     
Received:  13 April 2017     
ZTFLH:  O643.12  
Fund: Supported by National Natural Science Foundation of China (21266006), Natural Science Foundation of Guangxi (2016GXNSFAA380109) and Special Funds for Special Experts in Guangxi (NO2401007012)

Cite this article: 

Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 381-390.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.053     OR     https://www.jcscp.org/EN/Y2018/V38/I4/381

Fig.1  Synthesis route of three Schiff base surfactants
Fig.2  Molecular structure models of M1 (a), M2 (b) and M3 (c)
Surfactant ConcentrationmmolL-1 ΔWg ηw% Dwg / m2h
Blank --- 3.6×10-2 --- ---
M1 0.4 1.4×10-2 62.0 1.89
0.7 7.7 ×10-3 79.0 1.06
1.0 6.3×10-3 82.0 0.87
1.3 6.1×10-3 82.8 0.85
1.6 6.0×10-3 83.3 0.82
M2 0.4 9.7×10-3 73.0 1.34
0.7 6.0×10-3 83.0 0.83
1.0 4.0×10-3 88.8 0.55
1.3 3.9×10-3 89.1 0.54
1.6 3.7×10-3 89.6 0.51
M3 0.4 8.3×10-3 77.0 1.15
0.7 5.0×10-3 86.0 0.69
1.0 2.8×10-3 92.2 0.38
1.3 2.5×10-3 93.0 0.34
1.6 2.3×10-3 93.6 0.31
Table1  Mass loss results of Zinc after corrosion in KOH solutions without and with different concentrations of the synthesized surfactants
Fig.3  Nyquist curves of Zn during corrosion in KOH solutions without and with different concentrations of M1 (a), M2 (b) and M3 (c), and corresponding equivalent circuit (d)
Surfactant Concentration / mmolL-1 R1 / Ωcm2 R2 / Ωcm2 Cd / Fcm-2 η / %
Blank --- 0.31 52.82 1.2×10-2 ---
M1 0.4 0.57 108.71 4.1×10-4 51.41
0.7 0.58 147.44 1.1×10-3 64.18
1.0 0.62 224.60 1.0×10-2 76.47
M2 0.4 0.51 271.48 8.4×10-3 80.54
0.7 0.53 316.92 7.8×10-3 83.33
1.0 0.59 412.02 6.6×10-3 87.18
M3 0.4 0.62 480.30 5.9×10-3 89.00
0.7 0.65 519.53 7.7×10-3 89.83
1.0 0.64 672.02 4.686×10-3 92.14
Table 2  Fitting electrochemical parameters of EIS and corrosion inhibition of zinc electrode in ZnO saturated KOH solutions with different concentrations of surfactants
Fig.4  SEM images of Zn electrode immersed for 50 h in 6 mol/L KOH solutions with saturated ZnO (a) as well as three kinds of 0.7 mmol/L surfactants of M1 (b), M2 (c) and M3 (d)
Fig.5  Temperature (a~c) and energy (d~f) equilibrium curves of M1 (a, d), M2 (b, e) and M3 (c, f) surfactants adsorbed on Zn (1 1 0) surface in aqueous solution
Fig.6  Configuration diagrams of three surfactants M1 (a, d), M2 (b, e), M3 (c, f) before (a~c) and after (d~f) adsorption on Zn (1 1 0) surface
Molecular Emolecule+surface / (kcalmol-1) Emolecule / (kcalmol-1) Esurface / (kcalmol-1) Eadsorption / (kcalmol-1)
M1 -34470 -38.19 -34023 -408.81
M2 -34484 -16.48 -34023 -444.52
M3 -34496 -16.93 -34023 -456.07
Table 3  Adsorption energies of three surfactants on Zn (1 1 0 ) surface
Fig.7  MSD of three surfactants adsorbed on Zn (1 1 0)
Fig.8  Distance variation between two groups of three surfactants M1 (a, d), M2 (b, e), and M3 (c, f) before (a~c) and after (d~f) adsorption, respectively
Fig.9  Variations of distance between the surface of zinc and feature groups of M1 (a), M2 (b) and M3 (c) surfactants and H2O
[1] Khaled K F, Amin M A.Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives- Molecular dynamics, chemical and electrochemical studies[J]. Corros. Sci., 2009, 51: 1964
[2] Tang Y M, Yang X Y, Yang W Z, et al.Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4-thiadiazole[J]. Corros. Sci., 2010, 52: 242
[3] Obot I B, Obi-Egbedi N O. Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors[J]. Corros. Sci., 2010, 52: 657
[4] Zhang J, Liu J X, Yu W Z, et al.Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline[J]. Corros. Sci., 2010, 52: 2059
[5] Bereket G, Hür E, Öğretir C.Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium[J]. J. Mol. Struct.-THEOCHEM, 2002, 578: 79
[6] Cruz J, Pandiyan T, García-Ochoa E.A new inhibitor for mild carbon steel: electrochemical and DFT studies[J]. J. Electroanal. Chem., 2005, 583: 8
[7] Rodríguez-Valdez L M, Martínez-Villafañe A, Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties[J]. J. Mol. Struct.-THEOCHEM, 2005, 713: 65
[8] Lashkari M, Arshadi M R.DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects[J]. Chem. Phys., 2004, 299: 131
[9] Gómez B, Likhanova N V, Domínguez Aguilar M A, et al. Theoretical study of a new group of corrosion inhibitors[J]. J. Phys. Chem., 2005, 109A: 8950
[10] Zhang C G, Yang Y, Hao T, et al.Molecular dynamics simulations on the growth of thin amorphous hydrogenated carbon films on diamond surface[J]. Acta Phys. Sin., 2015, 64: 018102(张传国, 杨勇, 郝汀等. 金刚石表面无定形碳氢薄膜生长的分子动力学模拟[J]. 物理学报, 2015, 64: 018102)
[11] Wang Y, Yi H B, Li H J, et al.Effects of interactions between ions and alanine polar groups on alanine associations in saline solution: Density functional theory and molecular dynamics simulation[J]. Acta Phys.- Chim. Sin., 2009, 31: 1035(王莹, 易海波, 李会吉等. 盐水溶液中离子与丙氨酸极性基团间的作用对丙氨酸缔合的影响:密度泛函理论与分子动力[J]. 物理化学学报, 2009, 31: 1035)
[12] Zhao H X, Zhang X H, Ji L, et al.Quantitative structure-activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design[J]. Corros. Sci., 2014, 83: 261
[13] Yan H, Yuan S L, Zeng S Y, et al.The mechanism of selective deposition of luminescent molecules onto self-assembled monolayers using molecular dynamics[J]. Appl. Surf. Sci., 2015, 349: 163
[14] Obot I B, Gasem Z M, Umoren S A.Understanding the mechanism of 2-mercaptobenzimidazole adsorption on Fe(110), Cu (111)and Al (111) surfaces: DFT and molecular dynamics simulations approaches[J]. Int. J. Electrochem. Sci., 2014, 9: 2367
[15] Wang W H, Li Z, Sun Q, et al.Insights into the nature of the coupling interactions between uracil corrosion inhibitors and copper: A DFT and molecular dynamics study[J]. Corros. Sci., 2012, 61: 101
[16] Liu J, Liu Z, Liu J, et al.Inhibition performance of a new 3,5-dibromosalicylaldehyde-2-thenoyl hydrazine Schiff base for carbon steel in oilfield water and relevant molecular dynamics simulation[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 101(刘洁, 刘峥, 刘进等. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34: 101)
[17] Zeng J P.Molecular dynamics simulation studies of the non-phosphorus scale and corrosion inhibitors [D]. Nanjing: Nanjing University of Science and Technology, 2013(曾建平. 无磷阻垢缓蚀剂的分子动力学模拟研究 [D]. 南京: 南京理工大学, 2013)
[18] Zhao Y Q, Zhang Z F.Development of the additives for improving the function of zinc electrode[J]. Mater. Rev., 2005, 19(suppl.): 258(赵逸群, 张正富. 改善碱性锌电极性能添加剂的研究进展[J]. 材料导报, 2005, 19(增刊): 258)
[19] Wang H Q.Study on materials of the zinc electrodes [D]. Chongqing: Chongqing University, 2004(王华清. 锌电极材料的研究 [D]. 重庆: 重庆大学, 2004)
[20] Liu J.The study of Gemini surfactants as inhibitors for zinc in zinc-manganese battery [D]. Shijiazhuang: Hebei University of Science & Technology, 2016(刘静. 双子表面活性剂在锌锰电池中缓蚀性能的研究 [D]. 石家庄: 河北科技大学, 2016)
[21] Zheng L C.The study on corrosion inhibition performances of Gemini surfactants [D]. Wuhan: Wuhan Institute of Technology, 2016(郑乐驰. 双子表面活性剂及其防腐性能研究 [D]. 武汉: 武汉工程大学, 2016)
[22] Bu X T, Liang G C.Influence of the composite organic additive on electrochemical properties of zinc electrode in alkaline solution[J]. Chin Battery Ind., 2006, 11: 396(卜雪涛, 梁广川. 有机复配添加剂对锌电极电化学性能的影响[J]. 电池工业, 2006, 11: 396)
[23] Yan Y, Li W H, Cai L K, et al.Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 M HCl solution[J]. Electrochim. Acta, 2008, 53: 5953
[24] Khaled K F.Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives[J]. Electrochim. Acta, 2010, 55: 5375
[25] Ren J Q, Zhao J S, Dong Z G, et al. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication[J]. Appl. Surf. Sci., 2015, 346: 84
[26] Amjad Z, Hooley J P.Effect of antiscalants on the precipitation of calcium carbonate in aqueous solutions[J]. Tenside Surfactants Deterg., 1994, 31: 12
[27] Drela I, Falewicz P, Kuczkowska S.New rapid test for evaluation of scale inhibitors[J]. Water Res., 1998, 32: 3188
[28] Musa A Y, Jalgham R T T, Mohamad A B. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl[J]. Corros. Sci., 2012, 56: 176
[29] Khaled K F.Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4[J]. Appl. Surf. Sci., 2008, 255: 1811
[30] Xia S W, Qiu M, Yu L M, et al.Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance[J]. Corros. Sci., 2008, 50: 2021
[31] Khaled K F.Corrosion control of copper in nitric acid solutions using some amino acids-A combined experimental and theoretical study[J]. Corros. Sci., 2010, 52: 3225
[32] Liu B, Lian Y H, Li Z, et al.Molecular simulation of drug adsorption and diffusion in Bio-MOFs[J]. Acta Chim. Sin., 2014, 72: 942(刘蓓, 廉源会, 李智等. 生物金属-有机骨架材料中药物吸附及扩散的分子模拟研究[J]. 化学学报, 2014, 72: 942)
[33] Kühnle A.Self-assembly of organic molecules at metal surfaces[J]. Curr. Opin. Colloid Interface Sci., 2009, 14: 157
[34] Xu Z, Yuan S L, Yan H, et al.Adsorption of histidine and histidine-containing peptides on Au(1 1 1): A molecular dynamics study[J]. Colloid. Surf. A-Physicochem. Eng. Asp., 2011, 380: 135
[1] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[2] Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[3] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[4] Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[5] WANG Qing, MA Xuemei, SHI Haiyan, YUAN Shan, GUO Jianfeng, LIANG Dong, HU Zhiyong. Inhibition Performance of Benzimidazole Derivatives for Steel 45(GB) in 1 mol/L HCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 49-54.
[6] WU Gang, GENG Yufeng, JIA Xiaolin, SUN Shuangqing, HU Songqing. THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
[7] ZHAO Jingmao, LI Jun. GEMINI SURFACTANTS CONTAINING HYDROXYL GROUP AS CORROSION INHIBITORS FOR Q235 STEEL IN BRINE SOLUTION SATURATED BY CO2[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[8] ZUO Shurui, LIU Ruiquan. CORROSION INHIBITION ACTIONS OF BIS-BENZOTRIAZOLE MANNICH ALKALI COMPOUNDS FOR COPPERIN 5% NAHCO3 SOLUTION[J]. 中国腐蚀与防护学报, 2011, 31(2): 105-110.
[9] GUO Haiyan, ZHU Junqiu, SHAO Yanqun, TANG Dian. ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[10] XU Yibing HE Deliang ZHOU Zhou ZHONG Jianfang XU Chao CUI Zhengdan ZENG Li. EFFECTS OF LOW CATHODIC POTENTIAL ON ELECTRODEPOSITED SILANE FILMS ON ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2009, 29(3): 220-224.
[11] Huaiyu Yang; Jiajian Chen; Chunan Cao; Dianzhen Cao. STUDY ON CORROSION AND INHIBITION MECHANISM IN H2S AQUEOUS SOLUTIONSⅷ.The adsorption behavior of imidazoline derivates on the mild steel electrodes in H2S solutions[J]. 中国腐蚀与防护学报, 2003, 23(2): 75-78 .
[12] HAN Keping FANG Jingli(Department of Chemistry; Applied Chemistry Institute; Nanjing University). XPS AND AES STUDIES OF ANTICORROSIVE COLOUR FILM ON ZINC[J]. 中国腐蚀与防护学报, 1997, 17(1): 41-45.
[13] ZENG Lingsan LIANG Benxi ZHANG Yaolong TANG Huiyao (Chemistry & Chemical Engineer Department; Hunan University). INHIBITION BEHAVIOUR OF N-ALKYL LAURYL AMIDE FOR CARBON STEEL IN SULPHURIC ACID SOLUTION[J]. 中国腐蚀与防护学报, 1997, 17(1): 68-72.
No Suggested Reading articles found!