Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 237-243    DOI: 10.11902/1005.4537.2019.060
Current Issue | Archive | Adv Search |
Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution
ZHANG Chen1, LU Yuan2,3,4, ZHAO Jingmao2,3()
1 South China Branch, Sinopec Sales Co. , Ltd. , Guangzhou 510620, China
2 College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3 Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
4 CenerTech Oilfield Chemical Co. , Ltd. , Tianjin 300452, China
Download:  HTML  PDF(2895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The synergistic inhibition effect of imidazoline ammonium salt (IAS) coupled respectively with three cationic surfactants in H2S/CO2 brine solution was predicted by molecular dynamic simulation technology. The predicted results were verified for Q235 steel in 3.5%NaCl solution by means of mass loss method, potentiodynamic polarization measurement and XPS analysis. Results show that the combination of IAS with dodecyl trimethyl ammonium bromide (DTAB) or tetradecyl trimethyl ammonium bromide (TTAB) all presents good synergistic inhibition effect. The complex corrosion inhibitors are mixed-type inhibitor. From XPS results, it follows that during the corrosion process, the IAS might mainly play the role in the formation of inhibition film on the Q235 steel surface, while the surfactant could mainly fill in the defects of the forming corrosion inhibition film. Possibly, the difference in synergistic inhibition effect for different complex inhibitors may be related to the steric hindrance of inhibitor molecules.

Key words:  CO2/H2S corrosion      carbon steel      corrosion inhibitor      XPS      molecular dynamic simulation      free volume fraction     
Received:  18 May 2019     
ZTFLH:  TG174  
Corresponding Authors:  ZHAO Jingmao     E-mail:  jingmaozhao@126.com

Cite this article: 

ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 237-243.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.060     OR     https://www.jcscp.org/EN/Y2020/V40/I3/237

Fig.1  Molecular formula of IAS (a), DTAB (b), TTAB (c) and CTAB (d)
Fig.2  Curves of FFV vsc%IAS for different composite inhibitors obtained by using the probe of H2O (a), H3O+ (b), Cl- (c), HCO3- (d) or HS- (e) molecule
Inhibitorv / mm·a-1η / %S
Blank0.7174------
5 mg/L IAS0.244365.9---
10 mg/L IAS0.107285.1---
5 mg/L DTAB0.67126.4---
10 mg/L DTAB0.65388.9---
5 mg/L TTAB0.67765.5---
10 mg/L TTAB0.563121.5---
5 mg/L CTAB0.68075.1---
10 mg/L CTAB0.431239.9---
5 mg/L IAS+5 mg/L DTAB0.076589.32.98
5 mg/L IAS+5 mg/L TTAB0.138280.71.67
5 mg/L IAS+5 mg/L CTAB0.381946.80.61
Table 1  Inhibition performance of different inhibitors on Q235 steel in CO2/H2S brine solution
Fig.3  Polarization curves of Q235 carbon steel measured in CO2/H2S coexistent brine solutions containing different inhibitors
Inhibitonβa / mV·dec-1βc / mV·dec-1Ecorrvs SCE / mVIcorr / μA·cm-2ηp / %
Blank56.6-198.4-746.5168.4---
5 mg/L IAS+5 mg/L DTAB58.1-181.7-679.18.295.1
5 mg/L IAS+5 mg/L TTAB54.8-223.6-705.925.285.0
5 mg/L IAS+5 mg/L CTAB55.9-207.9-738.879.952.6
Table 2  Electrochemical parameters fitted from the polarization curves of Q235 steel in CO2/H2S coexistent brine solutions containing different inhibitors
Fig.4  Wide-scan spectrum of the Q235 carbon steel imme-rsed in CO2/H2S co-existing 3.5%NaCl solution containing different inhibitors for 24 h: (a) 5 mg/L IAS+5 mg/L DTAB, (b) 5 mg/L IAS+5 mg/L TTAB, (c) 5 mg/L IAS+5 mg/L CTAB
Fig.5  High-resolution XPS spectra of N1s of the Q235 carbon steel immersed in CO2/H2S co-existing 3.5% NaCl solution containing different inhibitors for 24 h: (a) 5 mg/L IAS+5 mg/L DTAB, (b) 5 mg/L IAS+5 mg/L TTAB, (c) 5 mg/L IAS+5 mg/L CTAB
InhibitorPeak Area of N+Peak Area of —N=Percentage of peak area of N+ / %

5 mg/L IAS+

5 mg/L DTAB

735130236.1

5 mg/L IAS+

5 mg/L TTAB

38976033.9

5 mg/L IAS+

5 mg/L CTAB

329116022.1
Table 3  Parameters obtained from the high-resolution XPS spectra of N1s by immersing the Q235 carbon steel in the CO2/H2S co-existing 3.5%NaCl solution containing different inhibitors for 24 h
Fig.6  Schematic diagram of the mechanism of forming inhibitor film on the steel surface by IAS and the three surfactants in CO2/H2S co-existing 3.5%NaCl solution
[1] Li X H, Deng S D, Fu H, et al. Synergism between rare earth cerium (IV) ion and vanillin on the corrosion of cold rolled steel in 1.0 M HCl solution [J]. Corros. Sci., 2008, 50: 3599
doi: 10.1016/j.corsci.2008.09.029
[2] Oguzie E E, Li Y, Wang F H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion [J]. J. Colloid Interface Sci., 2007, 310: 90
doi: 10.1016/j.jcis.2007.01.038
[3] Okafor P C, Liu X, Zheng Y G. Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution [J]. Corros. Sci., 2009, 51: 761
doi: 10.1016/j.corsci.2009.01.017
[4] Qiu L G, Wu Y, Wang Y M, et al. Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid [J]. Corros. Sci., 2008, 50: 576
doi: 10.1016/j.corsci.2007.07.010
[5] Okafor P C, Zheng Y G. Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions [J]. Corros. Sci., 2009, 51: 850
doi: 10.1016/j.corsci.2009.01.027
[6] Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution [J]. Corros. Sci., 2014, 78: 29
doi: 10.1016/j.corsci.2013.08.025
[7] Khamis A, Saleh M M, Awad M I. Synergistic inhibitor effect of cetylpyridinium chloride and other halides on the corrosion of mild steel in 0.5 M H2SO4 [J]. Corros. Sci., 2013, 66: 343
doi: 10.1016/j.corsci.2012.09.040
[8] Zhao J M, Chen G H. The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution [J]. Electrochim. Acta, 2012, 69: 247
doi: 10.1016/j.electacta.2012.02.101
[9] Zhang J, Sun X J, Ren Y M, et al. The synergistic effect between imidazoline-based dissymmetric bis-quaternary ammonium salts and thiourea against CO2 corrosion at high temperature [J]. J. Surfactants Deterg., 2015, 18: 981
doi: 10.1007/s11743-015-1744-0
[10] Zhang C, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and three anionic surfactants in CO2-saturated brine solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 496
(张晨, 赵景茂. CO2饱和盐水溶液中咪唑啉季铵盐与3种阴离子表面活性剂之间的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2015, 35: 496)
doi: 10.11902.1005.4537.2014.157
[11] Zhang C, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and sodium dodecyl sulfate in CO2 system [J]. Acta Phys.-Chim. Sin., 2014, 30: 677
doi: 10.3866/PKU.WHXB201402111
[12] Amin M A, Mohsen Q, Hazzazi O A. Synergistic effect of I- ions on the corrosion inhibition of Al in 1.0 M phosphoric acid solutions by purine [J]. Mater. Chem. Phys., 2009, 114: 908
doi: 10.1016/j.matchemphys.2008.10.057
[13] Li X H, Deng S D, Fu H, et al. Synergistic inhibition effect of rare earth cerium (IV) ion and anionic surfactant on the corrosion of cold rolled steel in H2SO4 solution [J]. Corros. Sci., 2008, 50: 2635
doi: 10.1016/j.corsci.2008.06.026
[14] Obot I B, Obi-Egbedi N O, Umoren S A. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium [J]. Corros. Sci., 2009, 51: 276
doi: 10.1016/j.corsci.2008.11.013
[15] Hao Y S, Sani L A, Ge T J, et al. The synergistic inhibition behaviour of tannic acid and iodide ions on mild steel in H2SO4 solutions [J]. Corros. Sci., 2017, 123: 158
doi: 10.1016/j.corsci.2017.05.001
[16] Musa A Y, Jalgham R T T, Mohamad A B. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl [J]. Corros. Sci., 2012, 56: 176
doi: 10.1016/j.corsci.2011.12.005
[17] Wang D, Xiang B, Liang Y P, et al. Corrosion control of copper in 3.5wt.% NaCl solution by domperidone: Experimental and theoretical study [J]. Corros. Sci., 2014, 85: 77
doi: 10.1016/j.corsci.2014.04.002
[18] Yan Y G, Wang X, Zhang Y, et al. Molecular dynamics simulation of corrosive species diffusion in imidazoline inhibitor films with different alkyl chain length [J]. Corros. Sci., 2013, 73: 123
doi: 10.1016/j.corsci.2013.03.031
[19] Zhang J, Yu W Z, Yu L J, et al. Molecular dynamics simulation of corrosive particle diffusion in benzimidazole inhibitor films [J]. Corros. Sci., 2011, 53: 1331
[20] Qiang Y J, Zhang S T, Guo L, et al. Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid [J]. Corros. Sci., 2017, 119: 68
doi: 10.1016/j.corsci.2017.02.021
[21] Liao L L, Mo S, Luo H Q, et al. Relationship between inhibition performance of melamine derivatives and molecular structure for mild steel in acid solution [J]. Corros. Sci., 2017, 124: 167
doi: 10.1016/j.corsci.2017.05.020
[22] Salarvand Z, Amirnasr M, Talebian M, et al. Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies [J]. Corros. Sci., 2017, 114: 133
doi: 10.1016/j.corsci.2016.11.002
[23] Li X H, Deng S D, Lin T, et al. 2-Mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO3 solution [J]. Corros. Sci., 2017, 118: 202
doi: 10.1016/j.corsci.2017.02.011
[24] Zhang C, Zhao J M. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution [J]. Corros. Sci., 2017, 126: 247
[25] Singh A, Lin Y H, Obot I B, et al. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2 [J]. J. Mol. Liq., 2016, 219: 865
doi: 10.1016/j.molliq.2016.04.048
[26] Ferreira E S, Giacomelli C, Giacomelli F C, et al. Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel [J]. Mater. Chem. Phys., 2004, 83: 129
[27] Yu Z J, Kang E T, Neoh K G. Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers [J]. Polymer, 2002, 43: 4137
doi: 10.1016/S0032-3861(02)00263-X
[28] Xu J, Han X, Liu H L, et al. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant [J]. Colloid. Surf. A, 2006, 273: 179
[29] Weng L T, Poleunis C, Bertrand P, et al. Sizing removal and functionalization of the carbon fiber surface studied by combined TOF SIMS and XPS [J]. J. Adhes. Sci. Technol., 1995, 9: 859
doi: 10.1163/156856195X00743
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[9] Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG,Jianhua YIN. Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[10] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[11] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[12] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[13] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[15] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
No Suggested Reading articles found!