Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 505-509    DOI: 10.11902/1005.4537.2014.247
Current Issue | Archive | Adv Search |
Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment
Jingmao ZHAO1,2(),Xiong ZHAO1,Ruijing JIANG1,2
1. College of Material Science and Engineering,Beijing University of Chemical Technology, Beijing 100029, China
2. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
Download:  HTML  PDF(1060KB) 
Export:  BibTeX | EndNote (RIS)      

Four imidazoline derivates were synthesized using diethylenetriamine with stearic acid, oleic acid, n-docosanoic acid and erucic acid respectively as raw materials. Then the inhibition performance and adsorption capacity on the carbon steel surface and the ability of hydrophobic of the prepared derivates were studied in dynamic H2S/CO2 environment by means of dynamic weight loss test, SEM, AFM, contact angle measurement and molecular dynamics simulation. The measurememnt results for contact angle and AFM force showed that the hydrophobic effect is better and the adhesion force is bigger respectively for imidazoline derivatives with double bonds in their hydrophobic chains. The surface adsorption energy of the four imidazoline derivatives on the face of Fe (001) were calculated by using molecular dynamic simulation, the results indicated that the surface adsorption energy of imidazoline which has double bonds in hydrophobic chain was larger than that one without double bonds. The theoretical evaluation of corrosion inhibition performance of four imidazoline derivates accorded well with the experiment results.

Key words:  H2S/CO2 environment      imidazoline      contact angle measurement      molecular dynamics simulation     

Cite this article: 

Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 505-509.

URL:     OR

Fig.1  IR spectra of four kinds of imidazoline derivative
Inhibitor Corrosion ratemm·a-1 Inhibitionrate
Blank 2.8214 ---
IM-17 0.8258 70.7%
IM-17D 0.5849 79.2%
IM-21 0.7260 74.3%
IM-21D 0.5677 79.8%
Table 1  Corrosion rates of carbon steel after addingdifferent imidazolines in H2S/CO2 solution
Inhibitor Left / deg Right / deg Average / deg
IM-17 83.7 83.4 83.6
IM-17D 93.9 93.6 93.8
IM-21 92.9 92.9 92.9
IM-21D 101.3 101.3 101.3
Table 2  Contact angles of carbon steel adsorpted byimidazoline derivatives
Fig.2  Force curves measured by AFM on the surfaces of the samples with imidazoline inhibitors
Fig.3  SEM images of corrosion products formed in the solutions containing IM-17 (a), IM-17D (b), IM-21 (c) and IM-21D (d)
Fig.4  Adsorption conformations of IM-17 (a), IM-17D (b), IM-21 (c) and IM-21D (d) on Fe surface
Inhibitor EMolecule / kJ·mol-1 ESurface / kJ·mol-1 ETotal / kJ·mol-1 EAdsorption / kJ·mol-1
IM-17 155.4 -476780.2 -476855.8 231.0
IM-17D 269.2 -476780.2 -476797.4 286.4
IM-21 333.5 -476780.2 -476713.4 266.7
IM-21D 320.5 -476780.2 -476771.8 312.1
Table 3  Adsorption energies of four imidazoline inhibitors on Fe (001)
[1] Liu M, Wang Y.Corrosion factor research of gas pipeline in gas field containing sulfur[J]. Pipeline Tech. Equip., 2011, (4): 43
[1] (刘明, 王毅. 高含硫气田集输管线腐蚀因素分析[J]. 管道技术与设备, 2011, (4): 43)
[2] Srinivasan S, Kane R D.Experimental simulation of multiphase CO2/H2S system[J]. Corrosion, 1999, (14): 1168
[3] Zhou J M.Corrosion behavior and protection of pipeline steel in CO2/H2S containing high temperature and high pressure water medium role [D]. Xi'an: Northwestern Polytechnical University, 2002
[3] (周计明. 油管钢在含CO2/H2S 高温高压水介质中的腐蚀行为及防护技术的作用 [D]. 西安: 西北工业大学, 2002)
[4] Zhang Q, Li Q A, Wen J B, et al.Progress in research on CO2/H2S corrosion of tubular goods[J]. Corros. Prot., 2003, 24(7): 277
[4] (张清, 李全安, 文九巴等. CO2/H2S对油气管材的腐蚀规律及研究进展[J]. 腐蚀与防护, 2003, 24(7): 277)
[5] Zheng J S, Huang K Y.Review and prospect of corrosion inhibitor development[J]. Mater. Prot., 2000, 33(5): 11
[5] (郑家燊, 黄魁元. 缓蚀剂科技发展的回顾与展望[J]. 材料保护, 2000, 33(5): 11)
[6] Xiao L Y, Qiao W H.Development of imidazoline corrosion inhibitor for corrosive media[J]. Corros. Sci. Prot. Technol., 2009, 21(4):340
[6] (肖丽亚, 乔卫红. 咪唑啉类缓蚀剂研究和应用的进展[J]. 腐蚀科学与防护技术, 2009, 21(4): 340)
[7] Xu B J, Teng H L, Wang J B.Corrosion inhibitor of tetrahydroglyoxaline ramification[J]. Corros. Prot., 2003, 24(8): 340
[7] (徐宝军, 腾洪丽, 王金波. 咪唑啉类衍生物缓蚀剂的研究[J]. 腐蚀与防护, 2003, 24(8): 340)
[8] Al-sabbagh A M. Organic corrosion inhibitors for steel pipelines in oilfield[J]. Anti-Corros. Methods Mater., 1996, 43(1): 11
[9] Jiang X, Zheng Y, Ke W.Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3%NaCl solution[J]. Corros. Sci., 2005, 47(11): 2636
[10] Liu X, Zheng Y G.The effect of hydrophobic group on the inhibition behavior of imidazoline for CO2 corrsoion of N80 in 3%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 333
[10] (刘瑕, 郑玉贵. 咪唑啉型缓蚀剂中疏水基团对N80钢在CO2饱和的3%NaCl溶液中的缓蚀性能影响[J]. 中国腐蚀与防护学报, 2009, 29(5): 333)
[11] Rodriguez-Valdez L M, Villamisar W, Casales M, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors[J]. Corros. Sci., 2006, 48: 4053
[12] Zhang Z.Preparation of supramolecular inhibitor and its protection of the condensater system [D]. Beijing: Beijing University of Chemical Technology, 2013
[12] (张展. 超分子缓蚀剂的制备及其对凝结水系统的保护 [D]. 北京: 北京化工大学, 2013)
[13] Qu J E, Guo X P, Huang J Y.Study on adsorption of inhibitors by electrochemical methods and AFM force curves[J]. J. Instrumental Anal., 2007, 26(1): 110
[13] (屈钧娥, 郭兴蓬, 黄金营. 缓蚀剂吸附行为的电化学及AFM力曲线研究[J]. 分析测试学报, 2007, 26(1): 110)
[14] Allen M P, Tildesley D J.Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1987
[15] Maitland G C, Rigby M, Smith E B, et al.Intermolecular Forces: Their Origin and Determination [M]. Oxford: Clarendon Press,1981: 185
[16] Kornherr A, Hansal S, Hansal W E G. Molecular dynamics simulations of the adsorption of industrial relevant silane molecules at a zinc oxide surface[J]. J. Chem. Phys., 2003, 119(18): 9719
[17] Zhang J.Theoretical investigation on corrosion inhibition mechanism of imidazoline inhibitors [D]. Qingdao: China University of Petroleum, 2008
[17] (张军. 咪唑啉类缓蚀剂缓蚀机理的理论研究 [D]. 青岛: 中国石油大学, 2008)
[1] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[2] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[3] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[4] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[5] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[6] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[7] Yuna WANG, Kaibin NIE, Dong YANG, Juanyang YAO, Wantian DONG, Qiangqiang LIAO. Corrosion Inhibition of 2-Undecyl-N-Carboxymethyl-N- Hydroxyethyl Imidazoline on Carbon Steel in Simulated Seawater Reverse Osmosis Product Water[J]. 中国腐蚀与防护学报, 2015, 35(5): 407-414.
[8] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[9] Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[10] ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
[11] ZHAO Tong, ZHAO Jingmao, JIANG Ruijing. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[12] JIANG Yiyi,CHEN Yu,YE Zhengyang,ZHANG Zhao,ZHANG Jianqing,. Synthesis and Inhibition Efficiency of Heptadeceny Imidazoline[J]. 中国腐蚀与防护学报, 2013, 33(4): 325-330.
[13] ZHAO Jingmao,CHEN Guohao. Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
No Suggested Reading articles found!